

Pascal Primenr

by
David Fox
&
Mitchell Waite

Howard W. Sams & Co.

A Division of Macmillan, Inc.
4300 West 62nd Street, Indianapolis, IN 46268 USA

© 1981 by David Fox and Mitchell Waite

FIRST EDITION
SIXTH PRINTING — 1986

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted

by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect
to the use of the information contained herein. While every
precaution has been taken in the preparation of this book,
the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-21793-7
Library of Congress Catalog Card Number: 85-53275

Printed in the United States of America.

Preface

If you are learning programming, Pascal is a powerful language you
should know about. This book was designed for people who have dabbled
in the popular language BASIC and wish to learn the exciting capabilities
of Pascal. Today most experts agree that Pascal is on its way to becoming
the standard high level language of the entire computer industry. In fact,
the United States Department of Defense has adopted a language which
is a Pascal descendant (Ada) as the official standard computer language
for this country’s future computer program development. The reason for
Pascal’s wildfire acceptance is simple: it is one of the least ambiguous
programming languages you can find. Pascal contains the very best of
several well known languages, like BASIC, FORTRAN, and COBOL. But
the cornerstone of Pascal’s permanent future probably lies in the fact that,
unlike any of its predecessors, it is “self-documenting.” It is made up of
English-like sentences that are arranged so that you can practically read
a finished program like a novel or a cookbook. Pascal is a structured lan-
guage, which means it requires the programmer to define the nature, type,
and range of items in an exacting and precise way. This is beneficial be-
cause you must think about the problem you wish to solve before sitting
down to create a program. It also means that your program is more likely
to run the first time and have fewer bugs to identify and unravel.

It is becoming obvious that Pascal is an ideal first language for pro-
grammers. This is especially true if one plans to make a professional ca-
reer of programming. Students who learn Pascal as their first computer
language have a relatively easy time learning other languages. Pascal
programmers have a much better chance of developing good habits and
learning the essential skills of problem definition and solution structuring.
On the other hand, people who take on BASIC as their first language may
have an easier time of it initially but not in the long run. BASIC program-
mers tend to develop bad programming habits which must be “unlearned”
in order to master a structured language like Pascal.

Learning the structure may be difficult, but it’s well worth the effort
since the very nature of this structure is what makes Pascal unigque and
extremely versatile. You see, a Pascal program is developed in modules,
which can be easily serviced, modified, and, most importantly, understood
by other programmers at some future date. Thus, a Pascal program is more
reliable and more responsive to changing needs than an equivalent BASIC
or FORTRAN program. If speed is crucial to your application, then you
will definitely want to examine Pascal. Because it is compiled, it is from 7
to 10 times faster than BASIC (on the same computer) and 50% faster

than FORTRAN. In many cases Pascal will be only 1 to 5 times slower
than pure machine code!

There are several variations of Pascal on the market today, and most
are very close to the original standard. The version of Pascal described
in this book is University of California at San Diego Pascal™* (or just
UCSD). Although this book is written for any version of UCSD Pascal,
special notes are given for Apple Computer®** owners.

If you are one of the many people who have a personal computer running
with BASIC, then there is probably a version of Pascal available for it
now (or one in the making). And because of its overwhelming power, in-
stalling Pascal in your computer will transform it into an entirely different
machine with new features and capabilities. For example, the Pascal Edi-
tor used on the Apple for creating source programs can also double as
a word processor for writing justified letters and manuscripts! Today you
can purchase a Pascal language for under $200 on a floppy disk. A com-
plete computer system for running Pascal, with disk drive, 64K bytes of
RAM memory, and color graphics is under $2600. For those on a budget
who may wish to just get their feet wet, many computer learning centers
have popped up across the country. These offer low cost rental time on
computers for under $3.00 per hour. Computer stores and demo rooms
also can give you a demonstration of Pascal. Most universities and many
colleges and high schools offer courses on Pascal.

Using examples that are easy, fun, and useful, this book is the first to
offer the subject of Pascal in a down to earth fashion that can be learned
quickly, even if you only know a little about programming. We have at-
tempted to present Pascal in a uniquely friendly and humorous way, rather
than the overly stuffy and heavily symbolic manner abounding in other
Pascal texts. One of the authors of this book is the originator of the first
public-access microcomputer learning center on the planet. The other is
an author of the popular Sams Primer book line.

This book is committed to the mastery of Pascal without tears.

DAviD Fox
MITCHELL WAITE

* UCSD Pascal is a trademark of UC Regents, San Diego campus.
** Apple is a registered trademark of Apple Computer Inc.

This book is dedicated to Jessica Fox
and all other children of the future.

Acknowledgments

It started with a dream and ended in an envelope with first class postage.
In between went hundreds of hours of research, programming and study,
1,000,000 key-strokes, several long debates, and many good laughs. The au-
thors would like to express their thanks and deep appreciation to the peo-
ple who participated in molding this book into its final form:

Annie Fox for her extreme patience, methodical proofing of the manu-
script, and her personal contact with Uncle Pascal.

Randee Fox for her precious illustrations which adorn the book.

John Scribblemonger (alias Scot Kamins) for his unabashed, perceptive,
and totally disarming (sensitive) review.

We would also like to thank Jim Merritt, Philip Lieberman, Corey Kosak
and Chris Wells for reviewing the manuscript for technical accuracy, and
Jim Ayers, Edwin and Eric Braun, and Ken Klein for their constructive
feedback.

Our appreciation goes to MicroPro® for giving us a copy of their fabu-
lous wordprocessing package, WordStar®, which accepted our 1,000,000
keystrokes without losing one, Comprint for their 80 column printer which
generated the program listings, and Computerland of Marin for the loan
of M&R Enterprise’s Sup’R’Terminal 80 character board which allowed us
to enter our programs in UPPER and lower case. We’d also like to thank
Apple Computer Inc.® for their responsiveness and support. '

Finally, we humbly thank Kenneth Bowles for bringing Pascal to the
U.S.A.,, and Niklaus Wirth for creating it in the first place . . . the world
of programming will never be the same!

DaviD Fox
Mi1TCH WAITE

Contents

CHAPTER 1

INTRODUCTION : AN OVERVIEW OF PASCAL . .
Skip This Chapter — How This Book Is Organized — What Is Not Included
— What Is Pascal — The Crisis That Gave Birth to Pascal — The Rat’s Nest
Analogy to Pascal — Not a Black and White World — Why Is Pascal Special?
— The Parts of Pascal — A Little History of the Language — A Present
Day Example: Apple Pascal

CHAPTER 2

PASCAL: BEGINNING CONCEPTS . ;
Program Structure: PROGRAM, BEGIN, END _ WRITELN and WRITE
— Cursor Control: GOTOXY — Quiz

CHAPTER 3

VARIABLES AND INPUTTING .
Variables — Variable Types — Calculatmns - sz—Varlables _ READLN
— READ-Input Without Pressing “Return” — Quiz-Inputting — Other
Variable Types: REALs, BOOLEANs, LONG INTEGERs — Quiz-Other
Variable Types

CHAPTER 4

PROCEDURES THE FIRST TIME AROUND .
Building Blocks — Global and Local Variables — Procedures Callmg Proce-
dures — Nested Procedures — Quiz—Procedures

CHAPTER 5

PROGRAM CONTROL WITH LooPs
The FOR Statement — Variations on FOR — Compound Statements — The
Loan Payment Program — Expanding a Program — Quiz—The FOR State-
ment

CHAPTER 6

PROGRAM CONTROL WITH DECISION MAKING .
The IF-THEN Decision Maker — AND, OR, and NOT — IF- THEN ELSE —
Metric Conversion Program — Quiz-IF-THEN and IF-THEN-ELSE

CHAPTER 7

FURTHER CONTROL
The WHILE Statement — REPEAT UNTIL — Rev1smg the Metnc Pxo—
gram — GOTO Where — CASE: An Easier Way To Make Multiple Choices

Downloaded from www.Apple2Online.com

25

32

47

57

70

85

— CASE and BOOLEANs — The Metric Conversion Program Once Again
— Quiz

CHAPTER 8

PROCEDURES (THE SECOND TIME AROUND) AND FUNCTIONS .
Procedures Once Again — Quiz-Parameters — Functions-the Cousin of Pro-
cedures — FORWARD-Naming a Procedure or Function Before Its Time —
Quiz—Functions

CHAPTER 9

STRINGs AND LONG INTEGERs .
Maximum STRING Length — STRING Intrmsxcs — Inputtmg Numbers
With STRINGs — Quiz-STRINGs — Using LONG INTEGERs for In-
creased Accuracy — Exercises — Quiz-LONG INTEGERs

CHAPTER 10

MoRe DATA TYPES
Arrays-Linking Secalars Together — Qulz—Arrays — Customlzed Types—-
“Enumerated User-Defined Types — Quiz—Enumerated User-Defined Types
— Subrange Data Types — Quiz—Subrange Types — Sets — Quiz-Sets —
Putting It All Together-The Tic-Tac-Toe Program

APPENDIX A
PASCAL’S ADVANTAGES—A SUMMARY

APPENDIX B
PAscAL’s BUMMERS

APPENDIX C

OTHER PARTS OF A PASCAL SYSTEM .
Assembler — Library Linker — Dynamic Debugger

APPENDIX D
ASCII CHARACTER CODES

APPENDIX E

ASSEMBLY LANGUAGE INTERFACING
Why Use Assembly Language With Pascal — How Pascal Handles Assembly
Language — External Procedures and Functions — The Five Steps — A
Practical Assembly Language Example: PEEKPOKE — The Pascal Library
— Quiz

APPENDIX F
THE 6502 MICROPROCESSOR

APPENDIX G
INACCURACIES OF THE AMORTIZATION LOAN FORMULA

APPENDIX H
ANSWERS TO QUIZZES

INDEX .

95

. 110

. 144

. 184

. 185

. 187

. 188

190

198

. 201

. 202

. 205

chapter 1

Introduction: An Overview of Pascal

Who This Book Is For

This book is written for people with some experi-
ence in the BASIC programming language—however,
you don’t need to be an expert in it. We have gone to
some lengths to compare Pascal features with their
equivalent features in BASIC when we thought it
would be helpful. In case you have never learned
BASIC (or any other computer language, for that
matter) don’t worry, this book will still prove inval-
uable in learning how to use the amazing power of
Pascal.

What This Book Is Really About

Pascal is a remarkable computer language with the
features and capabilities that you find only among
the most exotic and expensive languages. Being so
sophisticated, it may come as no surprise that there
are several components to the actual Pascal system
you use on a microcomputer. Although we will briefly
explain these parts later in this chapter, we want to
point out that this book is mainly about using Pascal
to write powerful programs. This book is not about
the Pascal compiler which converts your typed-in pro-
gram to a set of efficient “boiled down” instructions
that run fast and furiously on your microcomputer.
This book is also not about the two tools that help you
write your Pascal program: the Editor and the
Filer. The Editor, for creating the typed-in program,
and the Filer, a program that allows you to move

Pascal program files around. The Compiler, the Edi-
tor, and the Filer are not standardized, and may
never be, so we’ll leave their explanation to the man-
ufacturers’ manuals. What is standardized, however,
are Pascal’s statements, facilities, and keywords.

Predictably, the computer world being as it is,
there currently exist disputes among manufacturers
regarding the “standards” for Pascal statements. We
looked around at several versions of Pascal available
for microcomputers and found that the UCSD version
is the most widely used. This is the version we used
while writing this book.

UCSD Pascal was developed over an eight-year pe-
riod (and a $2 million investment) at the University
of California at San Diego. It is now marketed com-
mercially by several software houses (see references
at the end of this chapter for a partial listing of
them). We used an Apple II computer to develop the
UCSD Pascal programs in this book, but regardless
of the computer and the Pascal which you have access
to, you will find this book applicable to your version.
Use this book as an adjunct to the reference manuals
supplied with your Pascal. The idea is to refer to your
manual when we point out something about Pascal
that is nonstandard. We’ll tell you when this comes
up. This book can be used in a beginning Pascal class,
along with a student workbook prepared by the in-
structor to fit the specific computer Pascal is run on.
Or this book can be read through on quiet evenings,
like a novel.

SKIP THIS CHAPTER

Beginning a book on a computer language as
powerful as Pascal could be an awesome expe-
rience. Since a primary purpose of Pascal is for
teaching computer science, you would think it
would be complicated, right? Well, we are about
to shatter that expectation. We are sorry to dis-
appoint you, but this book is not intimidating,
frightening, or even mildly overwhelming. There
are no strange and confusing roadblocks, boring
technicalities, or pedantic passages. In fact, the
real good news is that you can skip this entire

chapter and begin your reading with Chapter 2!
That’s because this chapter is simply a gentle in-
troduction to Pascal . . . what it is, where it came
from, why it’s so special, how it’s internally orga-
nized, and how it’s used by a programmer. The
rest of this chapter gives a brief history of Pas-
cal’s evolution and ends with a biography of Blaise
Pascal, the man for whom this language was
named. If you're the kind of person who hates to
read Prefaces or Tables of Contents to discover
how a book is organized, we have more good news.
The next section explains the book’s structure and

how to best use it to learn Pascal. It would prob-
ably be a good idea to read it; then you may skip
to Chapter 2 if you like.

HOW THIS BOOK IS ORGANIZED

This book is organized into 10 chapters. Each
one, except the first, has a group of true/false and
multiple-choice questions which allow you to test
your understanding of the major concepts. The
answers to the questions are given in Appendix H.
Unlike most books on Pascal, this one doesn’t try
to stuff everything there is to know about Pascal
between its covers. Rather this book explains the
most often used and easy to understand features
of the language.

Chapter 1 is an overview of Pascal and will
bring you up to date on what it is, what makes it
so popular and how its various components work
together. We compare Pascal to BASIC, tell you
the difference between a compiler and an inter-
preter, and what “P-code” is all about.

The chapter ends with a history that traces the
path from Pascal’s birth to its commercial accep-
tance today on microcomputers. And the grande
finale is a biography of old Blaise Pascal himself.

Chapter 2 explains a Pascal program’s struc-
ture, the WRITE and WRITELN statements, and
the GOTOXY cursor control statement. You write
your first program here.

Chapter 8 is about Pascal variables and input-
ting information with READ and READLN. You
learn about normal variables, like those in BASIC
(INTEGER, STRING, CHAR, and REAL) and
some special ones (LONG INTEGER and BOOL-
EAN).

Chapter 4 introduces one of Pascal’s most her-
alded and powerful features, PROCEDURES, and
shows how they make life really easy for the pro-
grammer.

Chapters 5 and 6 present our first excursions
into program control. You learn about Pascal’s
BASIC-like decision making statements: FOR
loops, IF-THEN and IF-THEN-ELSE. Chapter 5
presents a useful Loan Payment program and for-
matted output control. Chapter 6 presents a Met-
ric Conversion program to illustrate control and
the use of Boolean true/false type variables.

Chapter 7 expands upon the previous chapter,
showing off some of Pascal’s decision making
statements, not available in most BASICs:
WHILE, REPEAT-UNTIL and CASE. Our Met-
ric Conversion program is enhanced to make use
of these features.

Chapter 8 takes us further into the details of

10

procedures, such as parameter passing. It also
explores ‘“numeric functions,” such as ABS,
TRUNC, SIN, COS, LOG, etc.

Chapter 9 is about STRINGs, STRING func-
tions, and LONG INTEGERs. It covers the way
UCSD Pascal handles STRINGs with its powerful
built-in string manipulation tools and shows how
to use STRINGs and LONG INTEGERs together
to make the Loan Payment program ‘“bullet
proof.”

Chapter 10 presents Pascal arrays and the sub-
tle concept of sets. Variable “types” are also pre-
sented and you get a taste of how to create custom
variables, not found in any other language.

Also, included in the Appendices is additional
information about Pascal: advantages and disad-
vantages of Pascal; other components of a Pascal
system; the secrets of interfacing assembly lan-
guage routines to Pascal (which you definitely
don’t have to know about to use Pascal) ; answers
to the quizzes; and other useful tidbits.

WHAT IS NOT INCLUDED

There are a number of Pascal features we chose
to exclude from this book. Information about them
is available in advanced Pascal books. This is a
beginning book, and we want to thoroughly cover
introductory concepts and not try to overwhelm
you with all of Pascal’s wonderful features. Not
included are:

1. Use of the GOTO statement.

2. RECORD TYPES and the WITH statement.

3. FILE TYPES (CLOSE, EOF, RESET, RE-
WRITE, GET, PUT, SEEK)

4. PACKED ARRAYs (SCAN, MOVELEFT,

MOVERIGHT, FILLCHAR)

POINTER TYPES (NEW, DISPOSE)

Use of recursion.

SEGMENT PROCEDURES

EOLN

BLOCKREAD, BLOCKWRITE

10. Graphics

Begin Your Journey. Now that you know how
we shaped the book, you can start your journey.
We make one prediction (or Uncle Pascal makes
it) : After you learn to use Pascal, your relation-
ship to computers and how you create programs
will totally change. We invite you to take the
plunge.

2 o0 o o

WHAT IS PASCAL?

Pascal is a programming language on its way
to becoming the language of the future. Pascal

was created mainly by one man, Niklaus Wirth,
a professor in Zurich, Switzerland, as an answer
to a growing crisis in the computer community—
runaway software costs—and also as an ideal lan-
guage for teaching students good programming
skills. Pascal’s magic is partly in its unambiguous
nature . . . a program written in Pascal reads
(almost) like an English language description of
a problem’s solution.

Pascal is a structured computer language, one
which allows the instructions of the program to
be grouped into orderly “sections” that are “self-
explanatory.” A structured language, as con-
trasted with an unstructured language, has a clear
beginning, a clear ending, and a series of bite-
sized modules that are easy to digest. There is no
question as to which parts of the program do
what. We can use a house as an analogy: a house
built without a foundation or any plans (unstruec-
tured) is more likely to fall apart in the event of
an earthquake than a house which was built “to
code.” Remodeling a house with a set of plans is
much easier than if you have to guess how it was
put together. For example, if you want to knock
out a wall to expand your bedroom, it would be
nice to know whether any electrical wires are in
the way. Having plans to follow always makes
things easier.

The modularization which a structured lan-
guage allows lets you build definitions (called
PROCEDUREs and FUNCTIONs) which can
then be used in other definitions. These “custom-
ized modules” can be used again and again in later
programs. However, the most important aspect of
a structured language, like Pascal, is that pro-
grams written in it can be so clear, concise, and
self-documenting that even someone other than
the original programmer can understand what
the program is supposed to do! Contrast this to
programming languages which hinder the crea-
tion of self-documenting code (e.g., most versions
of BASIC). Trying to comprehend an unstruec-
tured program is often like going on a wild goose
chase—one part of the program sends you to an-
other part which sends you to another part which
sends you And when you get to a part, there
very often isn’t any clue as to what is supposed to
transpire there! Variable names in BASIC (see
Chapter 3) are usually too short to convey any
meaning, there aren’t enough comments through-
out the program, and the program looks like one
huge undecipherable block with a bunch of line
numbers of up to six digits on one side. Weeks or
months may be spent before one can fully compre-
hend the program’s purpose! In fact, some pro-

1

grams may never be decipherable. (However,
writing a program in Pascal doesn’t in any way
guarantee that the program will be readable.)

THE CRISIS THAT GAVE BIRTH TO PASCAL

In the mid 1960’s, the cost of computer programs
became a huge problem for companies which did
a lot of data processing. Not only were the costs
to produce a program being misjudged, but the
schedules created to predict when a program was
to be finished were the objects of cynical jokes,
such as “We are just about ready to produce the
schedule for how long it will be before we can
produce the schedule” or “We need it by yester-
day.” Program schedules were frequently a thorn
in the side of company managers . . . it was diffi-
cult to get the programmer to make meaningful
estimates as to how long a problem takes to pro-
gram in a particular language, and how easily
the language of choice can be used to solve the
problem. Program schedule timing became less
and less reliable. Corporations were at a critical
junection, Such problems stemmed from:

® poor management of programming projects
® undisciplined program code

® inadequate documentation

® low programmer productivity

Pascal came as a well-timed solution to all these
problems. The instructions which make up Pascal
are “disciplined” which means that Pascal is a
“block structured” language . . . it is organized
into blocklike modules that make it easier to de-
sign and develop a program. Pascal forces the pro-
grammer to be concise and exact. The blocklike
modules are read like the paragraphs of a book
—each should contain just enough information
for one to understand its purpose.

THE RAT’'S NEST ANALOGY TO PASCAL

One way to quickly appreciate Pascal is through
a simple analogy to electronic hardware. Previous
to Pascal, programs looked like the “rat’s nest” of
wires that one found in early television sets and
radios. These programs consisted of strange sym-
bols and unintelligible codes that only an ex-
tremely patient soul could interpret. A Pascal
program, however, is more like the present day
television sets that are built with plug-in printed
circuit boards. When something goes wrong, the
bad board (the bad module) can be quickly iso-
lated and replaced or modified to work correctly.
Which would you rather fix? Because of its modu-

R e . e s e e e e et S
St — = e

S e TR e e e e T ST T

o = T e e e s e

=== e e
e e e e e e S W N
: -

2

Sn
R

Q.—
<
vt P
(,o“\ (,?~
o

12

Il{ml(:l(uili il \ll 'm
f L ul
7WI=:tll|lll(|l‘((futil lm{\'hl\::‘:‘{{#'u\

_,/’*\{wﬁxf

i
fiil 'H'l'.l“'d':' '?'ﬁ':‘:{l:'l

umf-“' A AT \]
/ dt E 0l
lh!lilli ’l‘nlw'll"ll‘ 'lllllli“l\ “H Qi l\ \ ‘|\ i\\n}x\ l\‘l m‘lli
g n¢ DR g
i a\!a\','\\.\qwmﬁ.\»eg
e e
\ hl. e nl [{\ ‘\\\\\\lll
e
N“‘Wﬁ&%ﬁﬁ%ﬁmﬁ

\\\‘}\‘\‘\““S“Wﬂ“ 'll\"’}\"\}“\"\}{\"n‘\(uI“.‘t‘l\‘}ll:':“ M.

AR |
w@ﬂ%ﬂw@‘”“‘
(AR AR
ol G
TRt
{

\ \I \\\\u'u‘\\u‘l‘l“““n

}!\ u}.\h\'ﬁ‘l‘(\u\x i \“I‘
A
l“l‘:\‘|\l‘l‘|“ g

i
|

lar nature (and a few other nice features which
we’ll cover later on), Pascal is a highly transport-
able language. By transportable, we mean that
(hopefully) any Pascal program can run on any
computer. In theory, a Pascal program written
for a giant IBM 370 computer will also run on an
inexpensive Radio Shack TRS-80®*, This is not
possible with a loosely defined language like BASIC
(and unfortunately, it is not always possible in
Pascal).

The modular nature of Pascal is either a bless-
ing or a curse, depending on whom you ask. It is
a blessing in that the program modules can be
“revised” or “updated” with relative ease, and
realistic estimates can be made for development
time schedules. Reliability increases when Pascal
is used (yes, a program has degrees of reliability)

* TRS-801is a registered trademark of Tandy Corporation.

13

—1less “bugs” are likely to find their way into a
Pascal program than into a BASIC program.

On the other hand, using Pascal’s modules re-
quires more attention on the part of the program-
mer—everything has to be specifically described,
defined and listed in a predefined manner which
means more typing, planning, and things to con-
sider. But these things that don’t get considered
in unstructured languages are the same ones that
cause all of the problems!

Look at the following program sections written
in Pascal and BASIC. They both do the same
thing. Without getting into what they do or how
they work, we present them for comparison. Here
is the Pascal example:

FOR TermNow := NumberOfTerms DOWNTO 1 DO
Harmonic := Harmonic + 1/TermNow;

Here’s the same thing in BASIC:

Il
M\u i

SH‘ |l‘\

LT
it \\\

120 FOR I = N TO 1 STEP — 1
125 LET H = H + 1/1
130 NEXT |

Note the use of longer and more descriptive vari-
able names in the Pascal example as well as the use
of UPPER and lower case, and the more sensible
naming of keywords (DOWNTO instead of STEP
—1). As you read on in this book, you’ll discover
more of the advantages of Pascal.

NOT A BLACK AND WHITE WORLD

We don’t wish to give the impression that all
versions of BASIC are poor and unstructured.
But we aren’t aware of any that have all of the
features that Pascal has. Sure, many minicomput-
ers (such as Hewlett-Packard’s) have BASICs
that have allowed formatting of program state-
ments for years. On the microcomputer level, the

14

CBASIC language, which runs under CP/M™¥* (a
popular 8080 microcomputer operating system)
does allow extremely readable programs. The lines
can be indented and line numbers are optional
rather than mandatory. And then there’s Micro-
soft®** BASIC, which allows the use of multiple
colon (:) characters to shape the indentation of a
program line. But the ability to format the pro-
gram statements is only the first step towards
making a language into a structured language. The
ability to create independent subprograms (Proce-
dures and Functions), to protect the variables in
these subprograms from the rest of the program
or to make the variables accessible to certain parts
of the program, and the ability to set up controlled
communication between these subprograms are all
features that most BASICs can’t touch. (Not to

* CP/M is a registered trademark of Digital Research.
** Microsoft is a registered trademark of Microsoft.

mention being able to invent your very own vari-
able types!) The main difference in all of this is
that Pascal was created as a structured language,
while in BASIC, structuring is added on.
Perhaps a word from Uncle Pascal (who is on
a special retainer for the unique and pithy pro-
nouncements he contributed to this book).

Uncle Pascal says while some BA-
SICs allow indented formatting and
some BASICs allow structured pro-
gram statements, all Pascals allow
both, plus much, much more. You
can paint a shack to look like a
gingerbread house, but if you bite
into it, you won’t get a mouthful of sweets!

WHY IS PASCAL SPECIAL?

We have mentioned that Pascal is a well orga-
nized and easily read language whose modular
nature makes its programs more reliable and eas-
ier to manage. But this is only part of the story.

Pascal’s Magic Data Structures

This is something few BASIC programmers
would recognize as important, at first. User-de-
fined data types refer to the ability to create your
own ‘“customized variable types,” in the terms of
the actual problem you’re trying to solve. In most
BASICs, we are given 3 or 4 possible types, and
that’s it. We can let a variable be a real number,
an integer number, or a string of letters*. Pascal
has these same variable types in addition to allow-
ing you the freedom to make up your own! An
example: Suppose you wanted to represent the
shapes SQUARE, ROUND, RECTANGULAR,
OBLONG, ROD, and CONIC in your program. In
BASIC you could either represent them with
numbers, or in some BASICs as an array of
strings. This means creating a program opera-
tion (like searching for a shape) in BASIC will
involve some rather obtuse and indirect numeric
statements. You wouldn’t be able to look at the
statement and know that A$(35) represents a
ROD shape, for example. Pascal’s magic allows
you to create a mew type of data (variables),
called, for example, Shape, which can take on
only the ‘“‘shape values” given above. Your pro-
gram statements can say things like “IF Shape
— ROD THEN RemoveFromlInventory” which
clearly tells us what’s going on. Contrast this with
IF SHAPES$ = A$(35) THEN GOSUB 1000.
Which is easier to read? Pascal allows any kind
of variable you can dream up. The idea is to

* In some cases, “double-precision” real numbers.

15

bend the program to fit the problem the way you
would describe it to a person, rather than restrict-
ing yourself to the narrow constructs of the lan-
guage itself, as you are forced to do in BASIC.

More Than a Language

The UCSD version of Pascal is not just an iso-
lated language; rather, it is a complete “operat-
ing system” with several individual programs. To
get a better idea of what these system parts are,
we will cover them now. If you’re familiar with
BASIC, which allows you to simply turn on the
computer and start typing in your program state-
ments, you may be in for a surprise with Pascal.

How It Works

Pascal is a compiled language*. A compiled lan-
guage is one which first requires you to send your
original ‘typed-in” program to the “compiler.”
The compiler is a very large program itself (don’t
fret, you never have to read it!) which converts
your original Pascal statements to a “boiled-
down” set of instructions for the particular com-
puter you are using. This set of instructions is
often called the “object code” for the original
program. It’s this object code which is executed
when we “run” the program.

There are four steps in working with a compiled
language like Pascal:

1. Write the original program (type it in)
2. Compile it

3. Fix the errors

4. Run it

If a computer language isn’t a compiled lan-
guage, it is probably an “interpretive language.”
Most BASICs are interpretive languages, and
there are only three steps:

1. Write the program
2. Runit
3. Fix the errors

The step that’s missing is the separate “boiling-
down” step. Every time a program is run in an
interpreter language, the actual keywords are
scanned and analyzed, then each one triggers a
built-in package of instructions that does what the
keyword implies (e.g., PRINT, GOTO, INPUT,
ete.). This constant scanning means that both the
interpreter program and the original source state-
ments must be carried along in memory at the
same time. This takes up lots of memory space

* There are noncompiled and pseudo-compiled Pascals,
but for now we'll keep it simple and ignore these.

compared to the compiler’s boiled-down object
code. Finally, the actual scanning and recogniz-
ing phase of the interpreter can slow the pro-
gram’s execution speed considerably. However,
the interpreter approach is simpler for debugging
and development of a program . .. and that’s why
many manufacturers use it.

Imagine our language type as a “door opener.”
There are two kinds of door openers: “interpreter
openers” and “compiler openers.” An interpreter
opener has a rough job. He must carry a large
bag of keys wherever he goes. Each time he comes
to a locked door (a high level source statement)
he must sift through the bag (of built-in instruc-
tions) to find the one key that unlocks the door.
Traveling around in a house (the program) filled
with locked doors means dragging along this cum-
bersome, unwieldy sack of keys (oh, my aching
back!) and constantly digging and searching
through it for the right key.

16

Now, a compiler door opener’s job is a differ-
ent story. He has every key he’ll need for his trip
through the house arranged on a convenient key
ring before entering the front door. His plan for
moving through the house has been plotted and
perfected ahead of time. This means his journey
through the house is a breeze . . . he simply takes
the next key on the ring, inserts it in the lock,
twists gently and the door swings open.

The compiler door opener doesn’t have to sift
through the bag (the analysis stage of the inter-
preter) at all. In fact, there isn’t even any bag!
Of course, there are drawbacks to the compiled
door opener. The original arranging of keys on
the ring is time consuming, both choosing the
correct order as well as actually getting them on
the ring (long fingernails and strong hands are
needed). Unlike the interpretive opener which al-
lows carrying around a complete bag of instruc-
tions, the compiler opener must install only the

D

-0

necessary keys on the ring before he can discover
if the program will run. This extra step means
it will take longer to get the bugs out of a com-
piled program (the opener would have to take
apart the ring and put a new one together). But
once done, the program runs much faster than the
interpreter version.

Fig. 1-1A illustrates the BASIC interpretive pro-
cess. Contrast this with the Pascal compiler pro-
cess in Fig. 1-1B.

THE PARTS OF PASCAL

Although a Pascal Compiler is a program that
can be purchased separately from several sources,
to actually work with Pascal, you need at least two
other programs (or facilities) on your computer:
an Editor and a Filer (see Fig. 1-2). An Editor,

17

as you may already know from playing around
with microcomputers, is used to type in your orig-
inal program, (la) in Fig. 1-3. The program is
saved in the computer’s memory (RAM) as it is
typed in. Most Editors have facilities to make it
very easy to change text, make corrections, move
text around, etec. Once you have finished typing
in a complete program, you use the Editor to per-
manently save it onto a diskette (1b). The next
usual step is the actual compiling stage (2) which
converts the source code statements (which are
typed in and are now on the diskette) into an
“object code” program (which is also stored on
the diskette). You can now run (execute) this
object code (3) or make a permanent copy of it
on another diskette (4). When your program is
finished running, the computer enters a special
mode that provides you with a menu to choose
which “system” program (i.e., Compiler, Editor,

All resident in RAM

at run time.
BASIC PROGRAM

BASIC INTERPRETER

(ANALYZE
THEN EXECUTE)

execution

source statements

PASCAL PROGRAM

PASCAL COMPILER
(ANALYZE)

Only this part
resident in RAM
at run time.

EXECUTABLE
INSTRUCTIONS

« memory wasted
o slow
o easy to debug

(A) BASIC interpreter.

i (MACHINE CODE OR
OBJECT CODE)

o memory conserved
o fast
o hard to debug

(B) Pascal compiler,

Fig. 1-1. BASIC interpreter versus Pascal compiler.

etc.) you want to use next. To save the object
code and the text file, we use a system program
called the Filer (available in some popular ver-
sions of Pascal). Basically, the Filer is used to
“keep track’” of the files on the diskette—it’s not
really part of the edit-compile-run process. It can

COMPILER EDITOR

boils down source program creates source program

18

get the old text source file ready for editing, it can
rename files, delete them, and so on. Now, under-
stand that there are no Filer or Editor standards
. so we can’t really tell the whole story.
There are usually other parts, besides the Edi-
tor, Compiler, and Filer, that are used by a Pascal

Fig. 1-2. Three main parts of a

FILER Pascal system.

moves, saves, renames program

1. Create ‘source’ file using Editor, save on disk as text work file. A ‘work’ file is a temporary development file.

|
1
SOURCE
D I::> PROGRAM D D
IN RAM
EDITOR
EDITOR (TEXT)
a. Type in your Pascal program. : b. Save program as ‘work’ text file on disk.
RAM
2. Compile source to ‘boiled down’ object code, save as ‘code’ work file on disk.
a. Compiler gets source from text workfile |
\]
|:> TEMPORARY
RESULTS
OF COMPILING
Q COMPILER <] (CODE)
b. Save ‘boiled down’ object code as code !
workfile. I
RAM

3. Run (Execute) the object code program.

b. Control is passed to code then program
0BJECT CODE O begins to run. When done control is returned
RUN IN RAM to Pascal’s ‘world’ mode.
COMMAND
a. Code work file on disk is put in RAM. 1

RAM

4. Go back to step 1 and re-edit the source or save the text and code under desired file name using the Filer.

a. get WORK CODE
WORK TEXT

GO BACK TO STEP 1

FILER TO FURTHER EDIT.

b. save as MYPROG.CODE
MYPROG.TEXT
(or whatever name you wish)

Fig. 1-3. Using the parts of UCSD Pascal.

programmer. However, these other parts can be . .
ignored except by only the more sophisticated This Book Is About Writing Pascal Programs

users. Appendix C contains a section on these It would be tempting to describe the extremely
other parts if you are curious. useful features of the Pascal Compiler, Editor,

19

/T g

W77 i

(!

S
umﬂl’A\\l\L .

RS5F0,

and Filer. However, since none of these programs
are standardized, this wouldn’t really be that help-
ful. We can’t explain the many different Compil-
ers, Editors, and Filers so we will only concen-
trate on how to write the actual Pascal program,
and more specifically, using the UCSD version of
Pascal, developed by Kenneth Bowles and UCSD
students (and available on most microcomputers).
Depending on the computer you are using with
Pascal, there will be a Compiler, an Editor, and a
Filer which you will have to learn about from
your Pascal’s operating manual before you can
actually test (run) your program. Regardless of
which computer you use, this book is geared to tell
you primarily about how the standard Pascal lan-
guage works, with sidelights when we encounter
something special about Apple or UCSD Pascal.
Again, this is not a book on using the entire Pas-
cal system . . . consult your manual for such de-
tails*.

*If you just buy the Compiler, you must already have
an Editor and Filer.

20

A LITTLE HISTORY OF THE LANGUAGE

Pascal’s history begins in the early 1960’s with
one man’s dissatisfaction with the numerous com-
puter languages in use at that time. In 1965, Pro-
fessor Niklaus Wirth at the Swiss Technical Insti-
tute (ETH) in Zurich, Switzerland, presented a
new language as an enhancement and replacement
for ALGOL 60 (the most popular teaching-type
programming language world-wide at that time,
and rivaled only by FORTRAN and COBOL in
the U.S.). Wirth based Pascal on ALGOL because
of ALGOL’s superior structuring and flexibility*.
What he did was to drastically improve on its data
structuring facilities. Wirth was painfully aware
that the first computer language which a student
is taught “profoundly influences his habits of

* ALGOL was an elegant European language used for
teaching and business programming throughout the world.
However, because it was such an old language (developed
in 1955) and for some strange political/economic reasons
(IBM rejecting ALGOL, for example), ALGOL never
caught on in the U.S.A. Instead, FORTRAN swept over
ALGOL in the U.S.A., and then did the same in Europe.

thought and invention, and that the disorder gov-
erning these languages directly imposes itself onto
the programming style of the students.” In other
words, one’s first programming experience with
any language colors your habits from then on.
Wirth presented his ideas to the world but found
little support from the technical community.
Pressing on, Wirth presented a preliminary draft
of Pascal in 1968 and in 1970. The first Pascal
compiler (strangely enough) was written in FOR-
TRAN on a CDC 6000 computer (a gigantic ma-
chine). This Pascal proved a failure and was
dumped. Next, Wirth created a second Pascal
compiler, this time written in Pascal*; it worked
and Pascal was officially announced in 1971 by
Wirth (see references 1 and 2). Of course, keep
in mind there were no micros at this time, no
Apples, no low cost computers, and thus Wirth’s
publications, appearing in the sophisticated Acta
Informatica only became known in academic cir-
cles. Unfortunately, in the U.S., IBM had chosen
FORTRAN over ALGOL and all this hoopla about
Pascal was a lost cause stateside (except for an in-
sightful semiconductor manufacturer called Texas
Instruments, who began searching for a perfect
language for writing control-type software).

Wirth continued to perfect the language and a
more formal definition was published with C.A.R.
Hoare in 1972 (8) which improved the syntax,
and in 1978-1974 a revised report and user man-
ual (4) was published. Since that time, the use of
Pascal has rapidly grown in popularity and is now
used in many high schools, trade schools, and in
over 400 universities. Initially, Wirth handled dis-
tribution of the compiler from Zurich; but as the
language expanded, several dialects began to ap-
pear in several universities.

The main push for Pascal here in the U.S. was
due to Kenneth Bowles at the University of Cali-
fornia at San Diego. Bowles recognized, quite
wisely, that regardless of how wonderful Pascal
(or any other language) was, the one factor
needed to make Pascal popular fast was to make
it very easy to adapt the compiler to different
computers, particularly to different microcomput-
ers. If Pascal only took a few man months to adapt
to a Z80, a 6502, or an 8080, then lots of people
with micros could begin using Pasecal right away,

* If this seems like a “chicken before the egg” paradox,
i.e., where does the first Pascal Compiler come from, the
answer is that you can write a “minimal” Pascal Compiler
in Pascal, then hand translate this to object code to create
the first Pascal Compiler, then compile a bigger version of
Pascal written in minimal Pascal, and so on. This is known
as bootstrapping.

21

and this would quickly get Pascal’s name floating
around, and so on. Bowles and his students knew
that writing a pure Pascal Compiler for each indi-
vidual miero on the market would take years of ef-
fort. So they developed a simple solution. UCSD’s
Pascal would be a “pseudo-compiler” like Wirth’s,
instead of a true compiler. There would be a com-
piler that outputted ‘“P-code” (pseudo-code, P-
machine) instead of machine code (code/native
code, N-code). This compiler would produce the
same P-code regardless of the processor (ma-
chine) used (see Fig. 1-4). P-machine means the
Compiler doesn’t produce pure executable machine

- code for the microprocessor. It creates a “mas-

saged” code called “P-code” which must be “inter-
preted” (analyzed). It never produces pure exe-
cutable object code. By adding this interpreter we
can easily modify a Pascal Compiler for any micro-
processor by rewriting just this part. Thus, with a
P-code Pascal you can write programs on an IBM
370 that run on a TRS-80.

P-code is a set of fast instructions that still
can’t be directly executed (that’s why it’s called
pseudo-code, phoney code?). The P-code requires
an interpreter (like most BASICs do) to work.
The P-code interpreter analyzes each P-code in-
struction and triggers the right action for that
instruction. But because the P-code is slightly
boiled-down before hand, the P-code interpreter
can work (scan) much faster than the BASIC
interpreter. So we are still ahead of the game.
Bowles realized that all micros could use the same
Pascal Compiler and only a separate P-code inter-
preter would be required for each machine. It
turns out that the irterpreter is very easy to write
(Bowles’ goal) for any computer . . . the compiler
does all the heavy work making the P-code. When
you finally run the program the P-code is sent to
the interpreter which has a simple job now. It’s
as if the P-code were a partially digested code,
ready to give fast energy. Thus, we can ship P-
code around, and it will work on any micro. P-
code has its problems too, however. It is slower
than pure object code and therefore more difficult
to use in real time applications (i.e., where a com-
puter controls an assembly line or a machine), and
it doesn’t support bit i/o manipulation (for con-

trol type uses). Still Bowles’ UCSD Pascal was

easy to adapt and a powerful Editor and Filer sys-
tem had emerged, so that it wasn’t long before
UCSD Pascal was offered commercially. Many
technical people saw the value of Pascal and real-
ized its future and its place in their work. Pascal
was seen as important as BASIC, and soon many
companies were offering dialects of Pascal. (These

SOURCE PROGRAM

PASCAL PURE

usually relocatable native code— COMPILER

PURE

LIBRARY MICROPROCESSOR

0BJ CODE (N-CODE)

(A) Pure compiler produces N-code (N=native).

SOURCE

PASCAL COMPILER

— linked, relocated,
loaded, executed.

- Change this
part for different
microprocessors

P-CODE
INTERPRETER

Analyze P-Code
and execute it.

(B) P-machine produces P-code.

Fig. 1-4. What is a P-machine?

same companies could then count on graduates
from university computer science departments be-
“ing able to understand their projects!)

Whereas Bowles’ P-code Pascal made all micro-
processors look and work more or less alike (ouch
... all that time investment in choosing the XYZ-
80), versions of pure Pascal have appeared which
are created for specific micros and are optimized
for that processor.

Most “pure” compilers are faster running than
P-code Pascals and feature extensions (like bool-
ean bit manipulation of memory) and some omis-

22

sions (like lack of reals). Earlier we said there
was a Pascal standard. There is, and many com-
panies stick to it. However nothing can prevent
a manufacturer or software house from calling
something “Pascal,” souping it up with nonstan-
dard goodies, and advertising it as “enhanced”
Pascal. The lesson here is caveat emptor (let the
buyer beware) and understand what you give up
when you choose super Pascal ZYX, for example,
over a UCSD standard Pascal.

The bottom line on all these versions of Pascal
is this: it doesn’t really matter. Pascal will sur-

vive and catch on regardless of a specific version’s
mismatch to Wirth’s Pascal. The looseness of the
Wirth standard will lead to many dialects and ex-
tensions, just as BASIC has become popular in
spite of the many versions*. One will always ask
“which Pascal?’ Each company will push their
Pascal as the best. Programmers will undoubtedly
be forced to shift gears as they approach each new
Pascal dialect. Still, the situation has improved,
and only better, safer, clearer programs can result
from the popular use of Pascal.

A PRESENT DAY EXAMPLE: APPLE PASCAL

Apple Computer Corporation’s Pascal is a ver-
sion of UCSD Pascal (P-machine) which is, ac-
cording to Apple’s manual, “an extensively modi-
fied descendant of the P-2 pseudo machine from
Zurich” (translate: it’s UCSD’s Pascal). To this,
Apple Pascal has added its own extensions which
contain libraries of special nonPascal functions
such as graphics or machine i/o. In the Apple,
you place the words “USES APPLEGRAPHICS;”
at the beginning of your source program, and then
you can use the exciting three-dimensional graph-
ics keywords in your program. If you don’t use the
Apple extensions, the program should run on a
TRS-80 (or any other machine) with UCSD Pas-
cal. If you do use the extensions, only other Ap-
ples with UCSD Pascal can run the program.

The Amazing Blaise Pascal

Blaise Pascal was perhaps the first child computer-
freak-home-hobbyist. He was born in France in 1623
and educated at home. When he was 12 years old he
discovered the first proof to Euclid’s Proposition 32,
something few thinkers of today can handle. He was
one of those kids that today, if given a computer and
left alone, would soon be designing an improved
model. At 16, Blaise presented his famous theory in
projective geometry. One year later, he began devel-
oping a calculating machine for his father’s tax busi-
ness. Fascinated by the caleculator’s potential, he had
a working model in two years. He went on to have
over 50 such machines constructed. His calculator
was the rotating drum type, which works something
like an odometer of a car. His innovation was a
ratchet linkage that transferred a carryover to the
next drum.

When Pascal was 22, he was converted to “Jensin-
ism,” a religious order in conflict with the Roman
Catholic Church at that time. The followers of Jen-

* Also ANSI (American National Standards Institute),
IEEE (International Electronic and Electrical Engineers),
and ISO (International Standards Organization) are pre-
paring a joint final draft of the International Pascal Stan-
dard.

23

sinism claimed that the Church was wrong to mix
logic and rules of reason with God’s truths. For ex-
ample, the Church would condemn certain concepts
of science if they conflicted with the Bible or if they
conflicted with the Church’s power! Pascal agreed
with Jensinism and said religion was a spiritual, mys-
tical, personal experience and ‘“reason’” alone could
not be our guide in the affairs of men—spiritual ex-
perience transcended reason.

At 23, Pascal got interested in vacuums, met Des-
cartes, and published a famous treatise on vacuums*,
and one on conic sections (three dimensional cones).
By the time he was 28, he was once again involved in
math research and at 81 had established the funda-
mental foundations of integral calculus and probabil-
ity theoryt.

His involvement in Jensinism increased, and during
the same year, he had a religious/mystical experi-
ence, joined the Jesuits, and wrote a book called the
Provincial Letters, which swayed public opinion to
support the Jensinists. This book is considered to be
the beginning of French classical literature.

At 35, he shocked the academic world when he chal-
lenged all mathematicians to a contest in math, then
awarded himself the prize!

Pascal’s health was always poor, and it was won-
dered if his intense studies were the cause of his ill
health, or if his frailness led to his intense studies.
As his health got worse, he became more mystical in
his interests. In his later years, he became infamous
for his magie squares—organizations of numbers ar-
ranged in rows and columns, which result in wonder-
fully interesting mathematical relationships. For ex-
ample, when you add all the numbers in any row, the
number in each corner square is produced. Pascal’s
special contribution was his mystic hexagram (see
the end of this chapter). At 39, in the last months
of his life, he created the plans for the first public
transportation system—now the omnibus service in
Paris.

Pascal has been called a mathematician, a physicist,
and a religious thinker. Perhaps Wirth named his
language after him because he identified with Pas-
cal’s individual/independent/eccentric/mystical na-
ture (or perhaps he just liked Pascal!).

Today, many items of science are named after Pas-

cal:

The pascal (Mechanics) is a unit of pressure (also
called the torr).

Pascal’s Law: (Fluid Mechanics) confined fluid trans-
mits pressure uniformly in all directions.

Pascal’s Theorem: (Math) inscribing a simple hexa-
gon in a conic makes three pairs of opposite sides
meet in collinear points.

Pascal’s Triangle: (Math) [also Pascal’s Mystic Hex-
agram] Also known as a binomial array; this is a

% Pascal’s Law.
+ A toothache is supposedly responsible for this discovery—to take
his mind off the pain, he spent his time thinking about circles.

triangular array of binomial coefficients, bordered
by 1’s, where the sum of any two adjacent entries
from a row equals the entry in the next row di-
rectly below.

REFERENCES

1. N. Wirth, The Programming Language Pascal, Acta
Informatica, 1, 85-63, 1971.

2. N. Wirth, “The Design of a Pascal Compiler,” SOFT-
WARE-Practice and Experience, 1, 309-333, 1971.

3. C.A.R. Hoare and N. Wirth, “An Axiomatic Definition
of the Programming Language Pascal,” Acta Informa-
tica, 2, 335-355, 1973.

4. K. Jensen and N. Wirth, Pascal User Manual and Re-
port, 2nd Edition, Springer-Verlag, 1978 (c¢)1974.

5. R. Bates and D. Johnson, “Putting Pascal to Work,”
Electronics, June 7, 1979, 111-121.

6. K. Doty, “A Top Down Evaluation of Pascal,” Com-
puter Design, May 1980, 167-177.

7. J. Hemenway and E. Teja, “Pascal Update,” EDN,
April 1980, 101-105.

24

8. Dr. L. Leventhal, “Using Pascal in Industrial Envi-
ronments,” Digital Design, May 1980, 26-30.

9. K. Bowles, Beginner’s Guide for the UCSD Pascal Sys-
tem, Byte/McGraw-Hill (¢) K. Bowles, 1980.

J. Raskin and B. Howard, Editors, APPLE PASCAL
REFERENCE MANUAL, (e¢) 1979 Apple Computer
Inc., 312 pgs, product #A210019,

10.

UCSD PASCAL DISTRIBUTORS

Apple Computer, Inc., 10260 Bandley Drive, Cupertino, CA
95014 (408) 996-1010

SofTech Microsystems Ine., 9494 Black Mountain Road,
San Diego, CA 92126 (714) 578-6105

FMG Corporation, 5280 Trail Lake Drive, Suite 13, Ft.
Worth, Texas 76133 (817) 294-2510. Versions for TRS-80
Models 1, II, and III.

North Star Computers, Inc., 1440 Fourth Street, Berkeley,
CA 94710 (415) 527-6950

PCD Systems, Inc., P.O. Box 143, Penn Yan, New York
14527 (315) 536-3734. Versions for TRS-80 Model II and
computers with CP/M.

chapter =

Pascal: Beginning Concepts

Pascal has a number of commands and key-
words which are used to get the computer to do
something. In some cases, these Pascal commands
are exactly the same as the equivalent commands
in the popular computer language, BASIC (which
certainly makes life easier if you already know
BASIC). But in many cases, Pascal has its own
specific rules of syntax to follow, many of which
are very different than the syntax rules of BA-
SIC.

This means that learning Pascal once you know
BASIC is easier. It is much the same as learn-
ing to speak Cockney English after you’ve been
brought up in America. The general language is
still English (computerese), the meaning is simi-
lar, but the accent, the grammar, the slang, and
the social rules are different. At first, you may
find yourself mentally translating some of the
slang to its American equivalent, but later it will
become natural to think in Cockney. Also, when
first learning a language, it is much easier to read
or listen to the language than it is to actually
write it or speak it. (Isn’t it always easier to
translate something than to generate it from
scratch?) This is partly because you don’t have
to remember all of the new rules of grammar
(syntax) and partly because you don’t have to
dredge up the new words from your memory ; you
just have to recall their meaning.

In this chapter we are going to take a super-
fast walk through the fundamental “bottom line
stuff” of Pascal like the mandatory rules of pro-
gram structure (PROGRAM, BEGIN, and END),
the WRITE and WRITELN statements for out-
putting information, and the GOTOXY statement
for “cursor control.” After learning these rules,
you will be prepared to delve much deeper into
Pascal in the following chapters.

25

If you have a computer running Pascal, then
this chapter would be a good place to also learn
how to edit, compile, and execute your programs.
Since these steps are somewhat different in each
version of Pascal, we will not be going into them
in this book. Please check the documentation that
came with your version of Pascal—it should give
a good description of editing, compilation, and
execution.

The key to speaking any language fluently is
practice. We know, you've been hearing that since
your mother tried to get you to practice the piano
or the piccolo. Unfortunately, for those of us who
aren’t gifted with a photographic memory and
can’t stand the confusion that accompanies learn-
ing something new, your mother was right. There-
fore, as you read through this book, take the time
to do the quizzes and suggested exercises. These
have been specially prepared so you can check your
understanding as you read along.

PROGRAM STRUCTURE: PROGRAM, BEGIN, END

Before we jump into the action commands of
Pascal, we need to learn about the “structure” of
a Pascal program. One of the greatest differences
between Pascal and BASIC* is that if you don’t
follow the structural conventions when writing a
Pascal program, it won’t run (it won’t even com-
pile). BASIC, on the other hand, doesn’t really
have any structural conventions unless you want
to include the use of line numbers or the fact that
some versions of BASIC require an END state-
ment at the end of a program.

* Note: we will make many comparisons between BASIC
and Pascal. For a good BASIC book, see BASIC Program-
ming Primer, Howard Sams.

There are essentially two different types of
words used in a Pascal program:

Reserved words (keywords) — these are the
words which have some special significance
or meaning in Pascal. Their meaning was de-
fined when Pascal was developed. We will in-
dicate reserved words by writing them in
BOLDFACE UPPER CASE letters through-
out the text of this book.

Identifiers — these are the names which you as
the programmer make up to “identify” the
“boxes” in the computer’s memory (vari-
ables) and the various sections of a Pascal
program. It’s important to use names which
help you to remember what the purpose of
the identifier is. Identifiers will be written in
Boldface Upper and Lower Case letters
throughout the text of this book.

When reserved words or identifiers appear in the
program listings in this book, we won’t use bold-
face, but we will still use the convention of print-
ing reserved words in UPPER CASE and identi-
fiers in Upper and Lower Case.

Starting the PROGRAM

The following rules are true for all Pascal pro-
grams:
Always start a Pascal program with:

PROGRAM Name;
Note . . . you must include
the semicolon.

This statement ‘‘declares” the name of your pro-
gram. The word PROGRAM is a reserved word
(written in BOLD FACE UPPER CASE) and
the word Name is an identifier (Bold Face Upper
and Lower Case). Using a name allows you to
identify the purpose of the program. Just put the
name you want to use where the word Name is.
Notice the semicolon (;) at the end of the line.
These semicolons belong at the end of each state-
ment.

Pascal Names

Here are the few simple rules to follow when
naming things in Pascal:

1. Names must start with a letter of the al-
phabet.

2. The characters that follow the first charac-
ter must be either letters or numbers.

3. Names can be as long as you like, but only
the first eight letters are guaranteed to be
recognized by the computer. (Some Pascal

26

versions recognize more than the first 8 let-
ters.)

4. Names may contain Pascal “reserved words”
but can’t be reserved words.

Some sample names are:

Ramrod2
NewProgram

Payroll
Alphabet2Game

contains reserved
word PROGRAM

Some versions of Pascal don’t allow lower case
letters in identifiers (names), while other versions
allow other characters (such as _ @ or #) to be
a part of legal names. Here are some illegal ex-
amples:

3Step first character is not a letter
Re-Do illegal character (-)
Launch Ship illegal character (space)

If your version of Pascal does allow lower case
letters in identifiers, they may be interpreted as
UPPER CASE letters by the compiler, thus

DAYOFWEEK and DayOfWeek

would be interpreted as the same name. Check
your Pascal manual.

What’s in a Name?

Why even bother using names? Qver and over again,
we will be stressing how important it is to use names
that mean something to you while writing in Pascal.
Imagine what the world would be like if everything
had names like XZ or Al! Boring, confusing, monoto-
nous!? Pascal makes it very easy to use interesting,
exciting, and meaningful names so why bother using

a name like EX1A?

BEGINnings

The next mandatory thing you need in all your
Pascal programs is the reserved word:

BEGIN

This means that the main part of the program is
about to follow. BEGIN does not have a semicolon
after it (so much for rules*).

After BEGIN comes the real meat of all Pascal
programs (or texturized soy protein if you're a
vegetarian). We’ll spend most of the rest of the
book examining the marvelous things that occur
after the word BEGIN.

* Actually, the rules aren’t being broken as we’ll see in
Chapter 5 in the More On Semicolons sidebar—BEGIN
could “legally” have a semicolon after it.

ENDings

And at the very end of the program comes an-
other reserved word:

END.

with a mandatory period (.) added for extra fi-
nality.

Unecle Pascal says: If you don’t fol-
low my rules, like leaving out the
period after the END, no matter
how perfect your program . .. it
isn’t going to run. He who pays not
his electric bill eats cold spaghetti
in the dark!

Okay . . . review time. Here’s how the structure
of every Pascal program on earth must be:

PROGRAM Name;
BEGIN

{ body of program }

END.

Now that we have the fundamental structure
down, let’s put some stuffing into it.

WRITELN AND WRITE

The first thing you probably were taught when
you were learning BASIC was the keyword or re-
served word “PRINT.” Let’s learn Pascal in the
same order. The Pascal equivalent is*:

WRITELN

WRITELN (pronounced WRITE LINE) is used
to transfer text or numbers from the program to
the screen (or output device, i.e., printer). To
make the computer say “Hello there, my name is
Florence” you would enter into your program:

WRITELN('Hello there, my name is Florence’);

Note the parentheses “()”. Whenever you want to
write something on the screen, place it within the

* WRITELN is not really a reserved word, it is a pre-
declared identifier. Many of the Pascal commands are ac-
tually built-in routines which have been assigned a name
(identifier). The programmer can steal these names for
original routines if he/she wishes. However, the built-in
routine will no longer be accessible. We will refer to these
predeclared identifiers .as if they were reserved keywords
to keep things simple. See Chapter 8 for more on this.

27

parentheses after a WRITELN. Next notice the
apostrophes, or single quotes (’) inside the paren-
theses. These are equivalent to the double quotes
() used in BASIC. Use them to surround a string
of characters (called a string) that you want the
computer to print out. Finally, notice the required
semicolon found at the end of the line which we're
sure you won’t. forget.

The LN part of WRITELN tells Pascal that the
entire message between the apostrophes should be
output on the same line, and the cursor* should
end up on the extreme left of the next line when
done. For example:

WRITELN('This is a Pascal message’);

will output this when executed:

This is a Pascal message

\ the cursor ends up here

What WRITELN does (after it prints out what’s
within the apostrophes) is called an automatic
carriage return/linefeed.

The next keyword is:

WRITE

which is equivalent to using a BASIC PRINT
statement with a semicolon at the end. The semi-
colon in BASIC suppresses the automatic carriage
return/linefeed at the end of the line. This means
that the next line of text will be connected to the
end of the last line of output. In Pascal, the
WRITE command has the same effect—it prints
out text and lets the cursor sit at the end of the
line.
For example, the following lines:

WRITE('Hello there,’);
WRITELN(’ you sure look swell today!);
notice leading blank

will be printed as:
Hello there, you sure look swell today!

We put the WRITELN last so the next output
string starts at the beginning of the next output
line. The leading space, WRITELN (’_you...’),
keeps the comma from the line before separated
from ‘you’. You can remember the difference be-

* The cursor is the little white kox (or underline) which
seems to write the text on the screen. If the screen were a
blackboard, the cursor would be the point of the chalk.

LTTTIA

RS

N(Tllh“
S l

B 00

)
ProcRaMS

AR
RESERE

WORDS

RDe>

S
0
=
ey
‘@u

Ko

Il \/u \k
[

WRITELN as “Write a complete line of text” and
WRITE as “Write some text and then wait . . .”.

Our First Program

Now let’s put together all of the above elements
and create our first simple Pascal program called
WriteABit, as shown in Listing 2-1.

Hopefully you recognized the keywords PRO-
GRAM, BEGIN, END, WRITELN, and WRITE
and noticed an absence of line numbers.* While us-
ing Pascal, you’ll never have to worry about how
to squeeze 3 lines of statements between lines 120
and 121 (as you might in BASIC) ! Normally you
go into the Pascal “Editor” and just insert the
new line.

Take a look at the way the program is indented
between the keywords BEGIN and END. Indent-
ing is used to make the program more ‘“readable”

* Line numbers are mandatory in most versions of BASIC
where they are necessary to keep the statements in order.

28

and is an essential part of good programming
style. The program would run just as well with-
out indentation, but readability would suffer, espe-
cially later on when your programs become much
more complex., You’ll learn as we go on how in-
denting lets us modularize a program into pieces
we can understand.

Here’s what appears on the screen when we
compile and run our first program, Write ABit:

Learning Pascal is not really difficult.
What's really difficult is “UNLEARNING”
all of the habits you acquired while

using BASIC!

Make sense?

Spaced Out Pascal

Very often, indentation in BASIC isn’t practical
(even if it’s possible to do in your particular flavor
of BASIC) because the extra indented spaces take

'

I Ul
i e L A

RSPX

BASIC), there is no reason why they can’t
be included as part of a string.

up precious memory—when every byte of memory is
needed, why “waste” it on the program’s appearance!

(This is also the reason why most BASIC programs
don’t have enough REMarks or comments.) But since
Pascal is a compiled language, all spaces (other than
those within apostrophes) are compressed out of the
final compiled code. Also, many Pascal editors (i.e.,
UCSD) are designed to facilitate the use of indent-
ing—a special code is used at the beginning of each
indented line to tell the editor how many spaces to
indent (rather than actually saving the spaces in the
text file). So when you press RETURN at the end of
an indented line, the editor remembers how many
spaces you were indenting and automatically indents

. Note our use of WRITE—although we could

have placed all the information within the
WRITE (in our sample program) and the
following WRITELN on one line, we wanted
to include a WRITE command just for ex-
ample.

. While programming in BASIC, it’s all right

to let a string (a series of characters sur-
rounded by quotes—“This is a string”) ex-
tend beyond one line. This is a no-no in Pas-

the next line.

cal.

Here are some facts to remember about outputting Let’s elaborate on this last tidbit. For example,
in Pascal. Refer to WriteABit for some examples: the BASIC statement:

1. Notice that you can use WRITELN ; by itself
to create blank lines (equivalent to a PRINT
in BASIC with nothing following it).

2. If you want to use an apostrophe (single
quote) in a word, just put two of them to-
gether as we did in the word What’s (i.e,,
What’ ’s). Since quotation marks () have
no special meaning in Pascal (as they do in would run without any errors in BASIC even

screen edge

10 PRINT “THIS IS AN EXAMPLE OF LETTING

A STRING EXTEND BEYOND ONE LINE.”
the computer did a
CR-LF automatically as
you typed the G in
LETTING

29

Listing 2-1.

PROGRAM kriteABit;

BEGIN
WRITELN;
WRITELMN(' Learning Pascal
WRITELN;

WRITELNC What’ ‘s really difficult is

WRITEC(' all of the habits you’);
WRITELNC' acquired while’ J3
WRITELN(ueing BASIC! IJ;:

END.

though running this on a computer with a 40 char-
acter screen width would yield:

THIS IS AN EXAMPLE OF LETTING A STRING E
XTEND BEYOND ONE LINE.

It doesn’t look very good at all because the word
“EXTEND?” is broken in two. In BASIC, the com-
puter will do an automatic carriage return/line
feed when it reaches the end of the screen, so we
don’t have to worry about the computer giving us
an error.

In Pascal, however, a string is considered to be
a single element and it can’t be broken up into
separate lines. Doing the following in Pascal
would yield a compiler error*:

WRITELN('This is an example of letting a
string extend beyond one line.’);

Therefore, in Pascal you must break such a long
string into two statements:

WRITELN('This is not an example of letting a');
WRITELN(’string extend beyond one line.’);

It is acceptable in Pascal to place more than one
“clement” (i.e., multiple strings inside apostro-
phes) between the pair of parentheses of a
WRITELN statement; just make sure you sepa-
rate the elements with commas. If you do this,
then it’s fine to break up the statement into two
or more lines. All of the following are legal in
Pascal:

WRITELN('This Is an example’,’ of separate’,’ elements.’);
WRITELN(’This is an example’,

' of separate’,’ elements.’);
WRITELN('This is an example’,

' of separate’,

' glements.’);

* A compiler error occurs during the compilation of a
program when the compiler finds that a Pascal rule (syn-
tax, misspelling of a keyword, etc.) was broken.

30

is not really difficult.’)3

"UNLEARMNING"” 33

The output for all of the above constructs will be
the same:

This is an example of separate elements.

Uncle Pascal says: Don’t let a
WRITELN or WRITE string occupy
two lines unless commas are used.
If you cut your eye glasses in half,
they won’t stay on your nose.

Now it’s your turn. Create your own program us-
ing just what you have learned so far—experi-
ment with WRITELN and WRITE.

CURSOR CONTROL: GOTOXY

Many versions of Pascal (especially those de-
signed for microcomputers) have a means to al-
low you to place the cursor at any location on the
screen. This cursor placing statement is called
GOTOXY and it is used in the form:

GOTOXY(Xcoord, Ycoord);

where Xcoord and Ycoord are the X (horizontal)
and Y (vertical) coordinates which you want the
cursor to move to. The range for Xcoord is from
0 (left side of screen) to the maximum screen
width (39 for a 40 character screen, 79 for a 80
character screen). The range for Ycoord is from
0 (top of screen) to 23 (if your screen will dis-
play 24 lines of text). The following two state-
ments, when used in a Pascal program, will place
the cursor at the top left corner of the screen and
write a message:

GOTOXY(0,0);
WRITELN('Top left of screen’);

Here is how this will look on your screen:

Top left of screen

The program shown in Listing 2-2 will place a
number in each of the four corners of a 40 char-
acter by 24 line screen and one more number in
the center.

This is how CursorDemo will look on your screen:

3 4

Use GOTOXY to make the output of your pro-
grams look pretty!

Take the following quiz before you move on to
bigger and better things in Pascal in the next
chapter.

Quiz
1. Which of the following are not valid program names?
A. Progl D. Program
B. Check Writer E. TOBEGIN
C. WRITER F. 2Step

True or False

2. The semicolon at the end of a line is used for appearances
only.

3. Elements in a WRITELN statement are separated with
semicolons.

4. It’s a waste of memory space to indent in Pascal.
5. There are 8 errors in this program. What are they?

PROGRAM Starting Out

BEGIN
WRITELN(”This is an example of what not’)
WRITLEN('to do in Pascal because if you’);
WRITELN(’do, your program won’t compile);

END

6. What would the statement look like which will place the
cursor on line 7 at the 12th position on your screen?

Listing 2-2.

PROGRAM CursorDemo;

BEGIN
GOTOXY(3,8);
WRITEC" 17);
GOTOXY(35,8);
WRITE(" 2);
GOTOXY(®3,23);
WRITEC® 3" };
GOTOXY(39,23);
WRITEC(' 4’);
GOTOXY(19,11);
WRITEC(' S);

END. (% CursorDemo %13

chapter C]

Variables and Inputting

Now that you know how Pascal likes to be set
up (PROGRAM, BEGIN, END.) and how to out-
put to the screen (WRITE, WRITELN, and
GOTOXY), you are ready for some of Pascal’s
deeper meanings. In this chapter, we will explore
how variables are used in your programs, how
strings are seen by Pascal, and finally, how we
go about inputting information into the program
from the human user. This may seem like a lot
of material to present at once, but don’t worry,
we’ll make it easy for you!

VARIABLES

In BASIC, you were probably taught that vari-
ables were these little memory boxes where you
could store either numbers or letters. The numeric
variables had funny names like W1 or TT and the
letter-type variables ended with a dollar sign ($),
like BUS$ or Z$, so you could tell them apart from
numeric type variables. In most BASICs the com-
puter would only look at the first two characters
of the variable’s name (i.e., the BASIC would
think that ALPHABITS and ALPO were the same
variable though one is a breakfast cereal and the
other you would only feed to your dog!). If you
made the names any longer, you were “wasting
memory” again . .. a big no-no in BASIC. And
heaven help you if you used a name with a BASIC
“reserved word” (a word which is reserved for
the language’s commands and keywords) hidden
in it like TOY$ (contains TO) or MONTH (con-
tains ON—both are reserved words in BASIC).
So, invariably when you returned to a BASIC pro-
gram that you hadn’t looked at for a while, all
those two letter variable names which had so
much meaning to you at one time were now as
clear as some form of ancient hieroglyphics. And
how many times have you revised a program by

32

adding new program statements (including some
new variables) only to find that a strange new
bug popped up in a remote part of the program?
In many cases, you probably discovered that you
had unwittingly reused an important variable
name and thus reassigned its contents when you
shouldn’t have.

In Pascal, variables are still little boxes in mem-
ory, but you can make these boxes much more use-
ful by giving them names which are longer,
clearer, more significant, and easier to keep track
of. You also have the added ability to let vari-
able names be as wide as your screen, although
only the first eight characters are guaranteed to
be recognized by the computer. For example:

BreakWater and BreakWatch

are the same variable because the first eight let-
ters are the same in both, so we still need to be
careful when creating Pascal names.

When a Pascal program is compiled, the com-
puter assigns a specific number code to each vari-
able in the program which it uses to keep track
of them. This way the longer names don’t take up
any extra memory than shorter ones! This means
that instead of using T for total, or TTAL, or even
TOTAL, you can use a name which is as clear as
TotalAmountPaid (even though just the first
eight letters, TotalAmo, are significant). Isn’t
that convenient! Variable names, just like pro-
gram names, are identifiers so the rules for vari-
able names are exactly the same as the rules for
program names which we learned in Chapter 2.
Here they are for you again:

1. Names must start with a letter of the al-
phabet.

2. The characters that follow the first charac-
ter can be either letters or numbers.

s
NIRRT

ja)

RSFOA

3. Names can be as long as you like, but only
the first eight letters are recognized by the
computer. (Some Pascal versions recognize
more than the first eight letters.)

4. Names can contain Pascal “reserved words”
but can’t be reserved words.

Again, the letters in an identifier may be UPPER
and lower case in many versions of Pascal.

For an example of Rule 4, look at the name of
the previous program, WriteABit. There won’t be
any problems because the word, WRITE is con-
tained within the name.

Uncle Pascal says: Use fully de-
scriptive variable names. If you
are talking about Annual Interest
Rates, use AnnuallnterestRate be-
cause calling it INTR is likely to
confuse you. He who calls a bee a
butterfly is sure to get stung!

VARIABLE TYPES

So far we have talked about variable names, but
said little about what the variables represented. Is

33

AnnuallnterestRate a number? If so, what kind
of a number? How big is the number? Is it a
decimal number?

A variable doesn’t have to contain a number.
It can hold a letter, a punctuation symbol, a string
of letters, a word, or an entire sentence. So a vari-
able not only has a name, it also has a type which
tells the computer what kind of information the
variable will hold (i.e., what will be inside the
boxes in memory). In dealing with variables in
Pascal, just as in dealing with blood types (A,
B positive, ete.), if you try mixing types, you
can get into big trouble.

There are six types of defined variables in
UCSD Pascal: INTEGERs, LONG INTEGERs,
REALs, STRINGs, CHARacters, and BOOL-
EANs. Two of these, LONG INTEGERs and
STRINGs are not included as predefined variable
types in “standard Pascal” although most of the
Pascals for microcomputers do have them. For
now, let’s only look at INTEGERs and STRINGs
(we’ll look at the other types later on in this chap-
ter). First some facts about STRING and INTE-
GER variables.

STRING Variables

STRING variables can contain any character
or characters that you can type from the keyboard
or display on the screen: number, letter, punctua-
tion . .. anything. As in WRITELN, if you want
to use apostrophes, just type two in a row. Unless
you say otherwise, STRINGs can contain up to 80
characters (we’ll talk about how to change their
size in Chapter 9). Here are a few strings:

’T am a string.’ ’'SO AM IV

TRk T k% 8712 99
INTEGER Variables

INTEGER variables can be any positive or neg-
ative integer number (no decimal point). In Ap-
ple Pascal, an INTEGER can have a value from
—32768 to 82767 (some versions of Pascal have
wider ranges). Here are a few legal integers:

128 —3200 8080 0
"You can quickly discover what the allowable IN-
TEGER range is for your version of Pascal by
placing the following statement into a program:

WRITELN(MAXINT,
On the Apple, the output will be:

' — MAXINT);

32767 —32768

The people who created your version of Pascal
placed the MAXimum INTeger value into this
constant. All versions of Pascal have this “pre-
declared constant” value.

CALCULATIONS

The following numeric operators are used in
Pascal. These operators are used to perform cal-

culations on numbers and on numeric variables.

Most of these will probably be familiar to you.

+ Addition

= Subtraction

* Multiplication

/ Real division—will always yield a real
(decimal) number

Integer division—divide the numbers
and truncate (chop off) everything
after the decimal point

MOD Modulus (A MOD B yields the remain-

der after dividing A by B)

DIV

Some Rules

It 4s all right to divide one integer by another
using the Real Divide (/). However, the result
will never be an integer—it will always be a real

34

number (that is, there will be a decimal point in
the number—see the section on Reals towards the
end of this chapter). So for now, when you want
to divide one integer by another, use the DIV op-
erator, not the /.

Precedence in Calculations—Parentheses can be
used for clarity and to indicate the order in which
a calculation is to be carried out. Look at how
Pascal would calculate the following examples:

54+3*%x2=11
5+ 3) x2=16

There are a few things to note here. In the first
example, the computer multiplies before it adds,
even though the + sign came before the * sign.
In the second example, we used a left and a right
parenthesis to make the addition happen before
the multiplication. We say multiplication has pre-
cedence over addition and subtraction. Parenthe-
ses override these precedences of Pascal. Here are
two more examples:

6 +4DIV2-1=17
(6 +4) DIV2—~1=4

Like multiplication, division occurs before addi-
tion or subtraction. Here is a final example:

4 x 4 DIV 2 DIV 2 =4

Here the operators are * and DIV. These opera-
tors have “equal” precedence (+ and — also have
“equal” precedence), and in this case Pascal eval-
uates the expression from left to right. In our ex-
ample, Pascal multiplies 4 * 4, DIVides by 2 to
get 8 and DIVides by 2 again to get 4. So, multi-
plication and division take precedence over addi-
tion and subtraction.

Stuffing the Variables

Here are a few examples of how we set up a
variable, place data into it (initialize it), in Pas-
cal. Notice the funny symbol := which we use:

STRINGs INTEGERs
Alphabits := ’Food’ AgeinYears = 14
Sex =M Sum4 = 118
ZipCode := '94947 Temperature = —60
The colon equal sign combination (:=) is used in

Pascal instead of the equal sign (=) from BASIC
to perform the actual assignment. This sign (:=)
means “‘assigned,” “replaced by,” or “gets.” In the
previous example, the string value* Food is as-

* Calling a string of characters a “value” may not seem
natural, but a string is a value of sorts. Each character in
the string is represented in memory by a numeric ASCII
code, so a string is really a series of special number codes
that can be compared to other strings to see if they match
(see Chapter 6).

N
Ry
W
Q

signed to the variable Alphabits and the integer
value 14 is assigned to the variable AgeInYears.
Using the colon with the equal sign may seem like
an extra burden, but the equal (=) sign is saved
for use in Pascal comparison statements (for ex-
ample, IF x = 3 THEN WRITE(COK’) ;—which
will be covered in Chapter 6) where we indeed
mean equals and not replaces.

Declaring Variables

Now, in order to use a variable in Pascal, we
need to do a special act called “declaring it” which
means “write its name and define its type (so far,
just STRING or INTEGER)”. Variables are de-
clared at the very beginning of a program, im-
mediately after the PROGRAM Name and before
the BEGIN. Listing 8-1 is an example of a pro-
gram which uses variables and shows how they
are “set up.”

And here is a run of the program:
Did you know that it was only 66 years

from the time the Wright Brothers first
flew their airplane to when the first

35

man, Neil Armstrong, walked on the moon?
NOW YOU DO!

Pascal solves many of the problems of mis-
placed, misunderstood, or forgotten variables by
requiring you to “declare” all of your variables.
In essence, to declare a variable means: “I hereby
announce that I am using a variable called Name
in this program and it will be a such and such
type.” This may seem like a bother at first (all
that extra typing!), but in the long run, you will
really appreciate being able to look at the begin-
ning of your program and find a list of all vari-
ables used. And when someone reviews your Pas-
cal program 10 years down the road (or when you
want to make some changes in a few weeks), they
will know just where to look to find what the pro-
gram’s variables are and what their types are.
And since you used meaningful names, they may
even know what these variables represent!

The keyword

VAR

Listing 3-1.

PROGRAM Uariablas;
UAR Astronaut
FirstFl ightYear,
YearsElapsed

BEGIN

fAstronaut = "Neil
FirstFl ightYear 1383;
MoonkalkYear := 139863;
YearsElapsed = PoonlalkYear

Armstrong’ ;

GOTOXY(B,81);
WRITELNC(Tid you know that

Moonlal kYear,

it was only

STRING:

INTEGER;

- FirstFlightYear;

' yYearsElapsed,’ years’ };

WRITELNC' from the time the Wright Brothers first’);
WRITELNC flew their airplane to when the first’);

WRITELNC man,
WRITELN;
WRITELMNC’

‘ sAstronaut,’ ,
MOW YOU DO!’);

END.

tells the computer that you are about to declare
your variables. What follows this command is
a list of the variables and their types. In the
program Variables, there is one STRING vari-
able (Astronaut) and three INTEGER vari-
ables (FirstFlightYear, MoonWalkYear, Years-
Elapsed). Notice that there is nothing in the name
of any of these variables which tells you what
type they are. In BASIC, the $ in the name tells
you it’s a string variable, but there’s usually noth-
ing to help you decipher what kind of numeric
variables you are dealing with—i.e., is it an inte-
ger or a real (a number with a decimal point).
To find out the variable type in Pascal, just look
at the section of the program in which these vari-
ables are declared—right after the word VAR.
Easy, huh?

BY THE WAY ...
Using INTEGERs or REALs

Why bother worrying whether your numeric variable
is an INTEGER or a REAL? After all, a number is a
number! Well, INTEGERs take up less memory than
REALs. Also, calculations which use INTEGERs exe-
cute much faster than calculations using REALs. On
the other hand, REALs are essential when working
with monetary or scientific calculations. How would
a bank survive if all the pennies were just ignored in
a calculation. And we all know that there are a few
scientific measurements which are greater than 32767
or between 0 and 1 (imagine measuring the vastness

of the universe or the dimensions of an electron using

36

walked on the moon? J;

INTEGERs!). When using Pascal you must decide
which number tool will be most effective and then
declare your intentions!

Notice the way we formatted the VAR section
in the previous program. This is mostly a matter
of taste—there are no ““hard core” rules about how
you should set it up on the screen. It would have
been correct to do it in any of the following ways:

VAR Astronaut : STRING;
FirstFlightYear : INTEGER;
MoonWalkYear : INTEGER;
YearsElapsed : INTEGER;

or

VAR FirstFlightYear : INTEGER;
Astronaut . STRING;
MoonWalkYear,
YearsElapsed : INTEGER;

or

VAR Astronaut:STRING;
FirstFlightYear,MoonWalkYear,YearsElapsed:INTEGER;

and even

VAR Astronaut:STRING;FirstFlightYear,MoonWalkYear,
YearsElapsed:INTEGER;

Look over the above examples. Some are very
clear; others are more difficult to decipher. Since
neither spaces between words nor the number of

lines you use robs you of precious memory, and
since it is so much easier to understand a program
that has been thoughtfully formatted, why not
let your organizational and artistic abilities flow
freely? Use lots of spaces and extra lines, and
make your programs look beautiful!

Uncle Pascal says: 4 jalopy with
a broken windshield, no back fender
and a rusted out roof will probably
get you where you're going, but I'd
rather have a new Porsche!

Just remember these essential ingredients when
declaring variables:

1. The keyword VAR says “here comes the dec-
larations.”

2. The variable names go after VAR.

3. The variable type follows the variable name
and is separated from it with a colon (:).
(You may list all variables of the same type
together, separated by commas, and then
write the colon and the variable type.)

4. A semicolon goes at the end of the line after
the variable type.

By the Way-—~How Big Is Your Screen?

Once upon a time, all crt displays were 80 characters
wide by 24 lines high. When mierocomputers came on
the market, all this changed. Line lengths shrunk,
mostly to allow people to use low cost television sets
or monitors with their microcomputers. Two popular
screen formats today are 64 characters by 16 lines
and 40 characters by 24 lines. When writing your pro-
grams, keep that in mind and decide for what screen
size format you will be writing. If you are writing a
Pascal program for a screen that is 64 characters
wide and someone with a 40 character wide screen
wants to use it, that person will have to do quite a
bit of conversion before the output looks good. All of
the programs in this book are written so that their
output during execution will fit on a 40 character by
24 line screen, such as the Apple II has. If you are
using a 24 by 80 character screen, you can take two
40 character lines from our programs and make them
into one 80 character line. If you are using a 16 by
64 character display, you may have to do some addi-
tional reformatting of our programs to make the out-

put look pretty.

Now, let’s look at the rest of the program,
Variables. The first thing this program does af-
ter declaring its variables is to “stuff” the vari-
ables with fixed value information which in this
case consists of string characters between apos-
trophes and numbers (integers here, with no deci-
mal points). Again, notice the use of the colon
equal sign combination (:=). After assigning the

37

string value ’Neil Armstrong’ to the variable
Astronaut, we assign the appropriate numeric
dates to the variables FirstFlightYear (Wilbur
and Orville’s first successful flight) and Moon-
WalkYear (the year Armstrong jumped off the
ladder onto the dust of the moon). Then we get
into the heavy math and have the computer cal-
culate the difference between these two dates and
place the value into the variable YearsElapsed.

The blank line that follows is just for appear-
ance—to indicate a separate part of the program.
(This could be imitated in BASIC using a series
of REMark statements, and, in some BASICs, a
series of colons or linefeeds.)

In the next part of the program, we are out-
putting the above information. First, we use a
GOTOXY to place the cursor at the beginning of
the seventh line in preparation for the first
WRITELN statement. Now, look at this first
WRITELN statement. Recall that we considered
strings to be separate elements and that they can
be separated by commas in a WRITELN state-
ment. Variables are considered to be separate ele-
mentgs just as strings are. Therefore, commas are
used to separate variables also. Note the space
between the apostrophe preceding the numeric
variable and the word only (it was only_’). Spaces
are included within the apostrophes to keep the
numeric variables from attaching to the end of
a word. In some versions of BASIC, a space is
automatically printed in front of all numbers
(and in some BASICs, after the number). Pascal
leaves the spacing up to you. No prepackaging
here!

Again, we used spaces throughout Variables for
increased clarity although none were really neces-
sary. The spaces on either side of the := and the
minus sign (—) are there for appearances only.
Pascal doesn’t mind if you leave spaces out, but it
goes against everything Uncle P is trying to tell
us (actually, everything N. Wirth is trying to
tell us).

Initializing Variables

When a BASIC program is executed, all of the
numeric variables are set to zero (i.e., in most
BASICs when you type RUN). In addition, all
string variables are set to null (empty) strings.
Most versions of Pascal don’t initialize their vari-
ables at all when the program is first run, so if
you don’t do it yourself, you may get some very
strange results! Whatever garbage happens to be
at the location in memory where the variable
resides will appear in your variable. You won’t
discover the garbage until you try to print the

variable or do a calculation with it. So, always
initalize all your variables to the value you want
them to start with, or to zero/null*.

Uncle Pascal says: Initialize all of
your variables explicitly or suffer
the consequences of GIGO (Gar-
bage In = Garbage Out). He who
doesn’t wash last mnight’'s dishes
tastes last might’s meal tonight!

QUIZ—VARIABLES

True or False
1. The first 12 characters are significant in variable names.

2. STRING variables and INTEGER variables can easily be
distinguished just by looking at their names.

3. Keep your variable names as short as possible to save
memory.

4. Pascal initializes all variables to null or 0 at the begin-
ning of each program run so you don’t have to.

5. In Pascal, the symbol : = means something different than
the = symbol.

READLN

Perhaps the most critical part of any program
is the part that allows a person to communicate

* You should initialize your variables in any computer
language, even if the language does it for you.

with it during its execution. We say critical be-
cause when you are dealing with a real person
who can do any number of crazy things (e.g., tap
dance on the keyboard), your program must be
ready to expect anything. This is not as simple
as having your program output data to the screen,
since you always know what will happen (except
if your program has a bug, then you may be in
for some surprises!). In the case of Pascal, input-
ting and interactiveness is much more picky than
in BASIC.

So, let’s create an interactive program and learn
to surmount Pascal’s pickiness. To be able to en-
ter data while a Pascal program is running, we
use the keyword:

READLN

This, of course, means “read a line of informa-
tion.” A line means “a bunch of characters (or
numbers) which are terminated by a RETURN
(carriage return).” Although this sounds suspi-
ciously like BASIC’s INPUT command, there are
a few differences. First, in most BASICs you could
write:

INPUT “What is your name? ”;NAME$

Here’s what happens:

38

What is your name? i

\ cursor

appears (with the cursor sitting one space away
from the question mark) awaiting for your input
and press of the RETURN key.

In Pascal, you can’t print a “prompt” string
and input a variable using a single command like
this. Sorry The Pascal equivalent for writ-
ing a prompt string and inputting a variable
would be:

See, no “LN" so we get the cursor where we want it

t
WRITE('What is your name? ’);
READLN(Name);

Both versions (BASIC and Pascal) will look ex-
actly the same on the screen when the program
is executed.

READLN Error Traps

BASIC is much more forgiving of mistypes
than Pascal, especially if you try to enter let-
ters into a numeric variable using READLN. In
BASIC, typing letters into a numeric variable
INPUT will probably give an error message like:

INPUT ERROR, RETYPE
or

REDO FROM START

followed by a question mark on the next line and
another chance to type the number correctly. In
UCSD Pascal, if you try to type a letter into a
numeric variable, the execution of the program
halts entirely (it “bombs”), a cryptic error mes-
sage appears, and the system reboots (imagine
how the user would feel if this happened!). You
must then restart the program from the begin-
ning (this most definitely could have been better
designed). This means that you must write your
program so it can handle occurrences of bad in-
put or you lose everything. It means you must
learn about input testing and error recovery . . .
we’ll of course say more on this later.

Make sure you protect against en-
tering letters when Pascal is ex-
pecting a number! Uncle Pascal
says: Those who put oranges in
apple crates will never end up with
applesauce!

READLN Revealed: An Input Example

Our next program (Listing 3-2) uses READLN.
There are some new items in this longer Pascal

program—see if you can find them. And here is
a sample run of this program. We will indicate
all human inputs during a “run” of a program
by underlining them.

Of course, Annie pressed
the RETURN key here.

Hello there, what is your name? ANNIE ~~
Oh yes, ANNIE, | should have known!

Tell me, how old are vou? 29

Do you know that in 71 years
you'll be 100 years old?!?

Press “RETURN” to end:

Comments

Let’s start at the top. What you see on the first
line following the program name (Inputting) is
documenting information created with Pascal’s
version of the BASIC REMark statement—the
“paren-asterisk” Comment. Comments should be
used frequently to explain and document the pro-
gram. They make it easier for someone to read
the program like a book. To use comments, just
follow two rules:

1. Start all comments with the two-character
symbol (¥ —left parenthesis, asterisk

2. End all comments with the two-character
symbol *) —asterisk, right parenthesis

Make sure that you don’t add any spaces between
the parenthesis and the asterisk! If you do, the
two-character symbol will have become an illegal
three-character symbol. Pascal also allows you
to use the “curly brackets” { } instead of the
(* *) symbol. However, some microcomputers
don’t have the curly brackets available on their
keyboard, in which case you can’t use them! For
this reason, we’ll use the “paren-asterisk” symbol
throughout this book.

After the comment is the VARiable declaration
section. All variables used in this program are
now declared. The STRING and INTEGER types
are familiar, but what’s that other one?

CHAR Variables

Next, in the program Inputting, you’ll notice
that a variable called ClrScrnCode has been de-
clared as a new variable type, CHAR. A CHAR
variable can hold only a single CHARacter, no
more and no less. If we were to say

Listing 3-2.

PROGRAM Inputting:

(% Program to demonstrate the usa of READLN, COMMENTS,

and how to clear the screen using the CHR function. #1
VAR MName, Continua : STRING;
Age, Difference: INTEGER:
CirScrnCode CHAR;
BEGIN

CirScrnCode = CHR(12); (% ASCII 12 is the Form Feed code which %)
(% clears the screen on the APPLE II *

WRITE{ClrScrnCode); (% This {ine actually ciears the screen *)

WRITELN;

WRITEC(Hello there, what is your name? ~);

READLM(MNama 1 ;

WRITELN;

WRITELN(Oh yes, ' ,Name,’, I should have known!’);

WRITELM;

WRITEC Tell me, how old are you? ' J;

READLN(Age);

Differaence := 1868 - fAge;

WRITELN;

WRITELN;

WRITELN(Do you know that in ’ ,Differaence,’ ysars' 1;

WRITELNC you’ 1] be 188 yesars old?17);

GOTOXY(7,13);

HWRITE(C Press "RETURN" 1o end: ©);

READLMN(Cont inue); (% Wait for press of RETURMN key... *3

WRITE(CirScrnCode };

END. (% Inputting *2

ClrScrnCode = ;

ne space between apostrophes

in order to “empty out” the variable, we would
get an error when the program was compiled.
Likewise, if we tried

ClrScrnCode 'FATCHANCE';

we would also get a compiler error because we
are trying to squeeze more than one character
into the variable. The only legal use of CHAR is
when one and only one character is between the
apostrophes, i.e.,

ClirScernCode := 'X’;

40

which would place the letter *X’ in the variable
ClrScrnCode.

Uncle Pascal says: One in a hole
is par for this CHARs (“course’—
Uncle P has an accent), all others
go to Pitch and Putt.

P,

Using CHR to Clear the Screen

Now, in the first statement in our program fol-
lowing BEGIN, we did something special with
the variable ClrScrnCode. Instead of a regular
single character, we stored the special code which
will clear the computer’s screen when this variable
is printed. To do this, we use the built-in CHR

oNL\j ﬁlﬁ%{ WIEEK (efT!

DONT WoRRY ABOUT
USING COMYMENT&
KNOW/"

RSTFoX

ONE. YEAR LATER...

OHNO!
WHAT DID T
MEAN HERE?

),

N

)

il

routine. This is exactly like the CHR$ function
available in most BASICs. Here’s what it does. As
you may know, each character that your computer
recognizes has a special number code associated
with it. This number is called the ASCII code (see
Appendix D for a list of the computer’s charac-
ters and their ASCII codes). The ASCII code for

the capital letter A is 65, for the number 1, it
is 49. Computers also have some characters which
don’t actually appear on the screen when they are
printed, but perform some special function. For
example, a line feed is such a nonappearing char-
acter; it has ASCII code 10 and causes the cursor
to move down one line. A carriage return is an

41

ASCII 13. If your computer has a bell or buzzer,
s printing the code that corresponds to a Control G,
ASCII 7, will sound it for you.

Most computers with a crt (television screen)
have some special code to clear the screen. In some
cases, it’s a specific sequence of codes. Often, com-
puters use ASCII 12 (control L), otherwise known
as the Form Feed (FF) code. When this code is
sent to a printer, the current page (form) will
roll (feed) past and a new page will be ready for
printing. On a crt, the screen will be erased in a
flash. Check the operator’s manual for your com-
puter (or terminal or version of Pascal) to see
what code (s) will clear the screen.

Now suppose we wish to have our Pascal pro-
gram begin by clearing the screen. All we need
to do is to have the program execute a WRITE
with an ASCII 12 form feed character between
the parentheses. Except there’s a problem;
namely, how do you get the form feed character
into your program? There is no form feed key
on the computer. The answer is simple. We use
the handy CHAR type routine* in Pascal that con-
verts an ASCII number into its actual character,
or in this case, its nonappearing function. When
you write

ClrScrnCode := CHR(12);

the variable ClrSernCode will “‘contain” the
ASCII code for form feed. Now whenever our pro-
gram executes:

WRITE(CIrScrnCode);

the screen will clear. Simple, clear, and best of all,
self-descriptive even if you don’t know ASCII
(but do know Pascal) **,

Look to the right of the CHR(12); in the pro-
gram and you’ll find another comment. Comments
can be placed anywhere in the program—Dbetween
lines, after lines, before lines, in the middle of
lines, ete. The only places they can’t be used are
within strings, keywords, or identifiers.

Notice that we used a WRITE instead of a
WRITELN to ask the questions in the above pro-
gram. This, of course, is to place the cursor after
the question mark rather than on a separate linef.

* CHR is a CHAR type routine because it will return a
single character of type CHAR. Trying to use CHR to assign
a value to a STRING type variable will yield a compiler
error.

** You could say WRITE(CHR(12)); but that wouldn’t be
very descriptive.

1 For those of you with ever-inquiring minds, the LN
part of WRITELN actually causes the ASCII code for car-
riage return (13) and line feed (10) to be sent to the crt.

42

Pascal’s READLN does not automatically prompt
you with a ? as some BASICs do. This means you
must create your own prompt character (like :
or ... or -) but you can use whatever prompt you
like. Also, notice that we have a space following
the question mark. Besides being more readable
when the program is executed, this can also pro-
tect the program from a potential problem. Many
times, when the cursor is placed immediately af-
ter the question mark (or prompt), a naive user
will add a space or two in the beginning of the
response (for neatness). In this case if that hap-
pened, the user’s name would have a space or two
as the first character (s). This would lead to an
error if you were trying to match the user’s input
with a specific string (__Brian’ is not the same
as ’Brian’) *.

Further down the program, we input the INTE-
GER variable, Age. We used an INTEGER vari-
able instead of a STRING variable because we
will be using Age in a calculation (you can’t use
STRINGs in numeric calculations, even if the
characters that make up the string appear to be
numbers). After the Difference is printed out, we
center the phrase ‘Press “RETURN” to end:’ on
the screen a few lines down. Look at how we use
READLN to end the program. What is the pur-
pose of the variable Continue? It’s the variable
which will “hold” the null or empty string (string
with a length of zero) when the user presses RE-
TURN**, The program ends with another screen
clearing.

What Happened to Initializing Variables ?—You
may have noticed that the only variable we initial-
ized in this program is ClrSernCode. What about
the rule to initialize all variables? Well, we are
hereby introducing READLN as an alternative
method to initialize variables. There is no way to
get beyond a READLN without “initializing” the
variable to somethingt. Even if the user just
presses RETURN, the variable will be initialized
to a null string.

PAGE—BUuilt-in Screen Clearing

You may have wondered if there wasn’t a more
straightforward method of clearing the screen.

* It is possible to write the program in such a way that it
will check for leading (or trailing) spaces—see “STRING
FUNCTIONS” in Chapter 9 and Listing 10-3D.

** Actually, we could have left the variable Continue off
and the effect wouldn’t change; READLN; is a legal state-
ment. The only difference is that any characters entered
from the keyboard would be lost forever, since we aren’t
saving them in a variable.

1 Or causing the program to “crash” by trying to enter
a letter into a numeric variable.

Listing 3-3.

PROGRAM InputExper iment;

(# This is a program to test

VAR CharTest : CHAR;

BEGINM
WRITE(' Enter a string:
READLN(CharTest);
WRITELN(' That was
WRITELN;
WRITE(’ And another:
READ(CharTast };
WRITELNC(® That was

END. (% InputExperiment %)

‘Y

:);

Well, there is. There‘s a built-in routine in Pascal
which will automatically send the Form Feed char-
acter to your output device (ert, printer, or disk
file—however, we will only cover the crt at this
time). If you are using UCSD Pascal on an Apple
computer, here is how you use PAGE to clear the
screen:

PAGE(OUTPUT);

This is the method of screen clearing we will be
using in this book from now on. If your version
of Pascal won’t clear your screen when you write
PAGE(OUTPUT); in your program, then either
use the method we introduced earlier (using CHR
and the appropriate ASCII codes to clear your
screen) or consult your Pascal manual,

READ—INPUT
WITHOUT PRESSING “RETURN”

You may have wondered if there is a READ
command to go with the READLN just as there
is a WRITE to go with WRITELN. Yes, Pascal
lovers, there is. When entering STRINGs and
INTEGERs from the keyboard, there is almost
no difference between the two. The differences are
subtle and beyond the scope of this book. But when
the variable type is CHAR, there’s a big differ-
ence!

Try the following experiment. Enter the pro-
gram shown in Listing 3-3. Now compile and run
this program. During the execution of the pro-
gram, you will discover that when using a
READLN to enter data into a CHAR type vari-
able, only the first letter that you typed is stored
in the variable and there is no overflow error. But,

“* ,CharTest,” ".’ J);

43

inputting a single
CHARacter using both READLN and RERD

#)

" yCharTest,” “.");

you can’t use the backspace or delete key to cor-
rect that first letter typed. The computer will ac-
cept the first letter, then will wait for you to press
RETURN before it goes on. Not very practical if
you make a mistake during entry ! However, when
you use a READ to enter a CHAR type variable,
the computer will accept the first typed letter, and
then the program output will continue on the same
line without waiting for RETURN* ! Here is a run
of this program. Again, we are underlining the
human input. In this example, <CR> indicates
that the user pressed RETURN here.

We are in a READLN

Enter a string: HELLO THERE<CRY

That was “H".

And another: H That was “H”.\
- We are in a READ
(no RETURN needed)

READ’s ability to work without a RETURN can
be a very valuable tool if you want to:

(A) save the user from having to press RE-
TURN or

(B) collect only a single character input (for
example, a “Y” instead of “YES”).

As a general rule, you should use READLN when
entering all variables except for CHARs, then you
should use READ.

Pascal Potholes Preview

So far we’ve said little about what would happen if
you typed a number into a string variable. Well, we’ll
say a little about that now, but just as a preview.

* Much like the Applesoft “GET” statement, except that
here the character is “echoed” or printed on the screen.

There is no real problem when you enter numbers in
response to a request for string (letter) information
since any keyboard character can be entered into a
string—the computer will consider ANNIE and 99 to
both be valid strings. In fact, $1,783,532.75 would be
accepted without question as the name of a user!
(Later we will see that it does, in fact, make much
sense to input everything, including numbers, as
strings.) But, as we have mentioned before, entering
letters into a numeric variable will cause the com-
puter to belch immediately.

Time to check your understanding.

QUIZ—INPUTTING

True or False

1. When using READLN, Pascal automatically provides you
with a prompt character.

2. If you try to enter a letter into a numeric variable, Pascal
will give you another chance.

3. Comments are a waste of space and time—after all, isn’t
it obvious what the program is supposed to do!?

4. The symbol (* is the same as the symbol (*.
5. CHAR type variables may be set to only one character.
6. READLN and READ act exactly the same way.

OTHER VARIABLE TYPES:
REALS, BOOLEANS, LONG INTEGERS

You may be growing weary of all these vari-
able types . . . bear with us—understanding them
now will allow powerful Pascal features to make
more sense later on.

REAL Variables

A REAL variable is a numeric variable that
contains a decimal point. (No, there are no such
things as “pretend,” “unreal,” or ‘“make-believe”
variables.) In most BASICs, as you may know, all
numeric variables are reals unless you do some-
thing to change them to integers. Also, in BASIC,
Scientific Notation format or E-format (see box)
will only be used to output a REAL if that num-
ber is either too large or too small to be expressed
using the available number of significant digits
(also see box). In UCSD Pascal (and some other
versions), all REALs are expressed using Scien-
tific Notation. Here are some numbers that are
printed from a BASIC which has 9 significant
digits and a Pascal which has 6 significant digits
(having only 6 significant digits can be a definite
limitation).

BASIC (9 digit) Pascal (6 digit)

378.134 3.78134E2
043 4.30000E-2
1 : 1.00000 (all S‘cfenrific
671438915 6.T1439E8 gurtoroomoet

44

BY THE WAY ...
Scientific Notation Explained

When some people see a number expressed in Scien-
tic Notation, a fog appears around their heads and
they decide that computers are beyond them. Hold on
—Scientific Notation may look revolting, but it is just
a shorthand method of expressing very large or very
small numbers. That’s it!! For example, let’s say we
are working with a large number, one billion. This
looks like a 1 followed by 9 zeroes:

1000000000

Now take a look at these two numbers:
10000000000 1000000000

Can you tell at a glance which of these two numbers
is 1 billion and which is 10 billion? Most likely you
will have to count the zeroes to find out. According to
Uncle Pascal, Scientific Notation was created to keep
scientists who are in a hurry from having to count
the zeroes. This is how 1 billion looks in Scientific
Notation:

1.00 x 10¢

This is read as “one times ten to the ninth.” Now,
what does “ten to the ninth” mean? Well, ten to the
second, or 10% (called ten squared), means 10 X 10
(10 times 10) which equals 100. Ten to the third, or
10% (also called ten cubed), means 10 x 10 x 10
which is 1000. The rule is that the exponent (the
number to the right and above the 10) will tell you
how many zeroes there are in the number you get
when you carry out the multiplications. Thus 109 (or
ten to the ninth) is a 1 with 9 zeroes after it as
shown previously.

That explains the second half of the Scientific Nota-
tion number (1.00 x 10). All it does is show you
how big or small the number is. The first part of the
notation, 1.00 X in this case, tells you two things:

1. How many significant digits the number has.

2. What those significant digits are.
First, let’s explain what significant digits are. It has
to do with how many digits of accuracy the number
has. If you say that you are 34 years old, that num-
ber has 2 significant digits. Or you can say you are
34.04931506 years old (84 years and 18 days). This
number has 10 significant digits. All you have to do
is count the digits. The more significant digits you
use, the more accurate the number is. In our Scien-
tific Notation number (1.00 X 109) we have 3 signifi-
cant digits—the 1, and the 2 zeroes after the decimal
point. Of course, the three significant digits of this
number (1.00) could be replaced by any digit from 0
to 9 (yielding numbers from 0.00 to 9.99).

Since computers can’t display the exponent above the
line (yet), they print their numbers somewhat differ-
ently:

1.00E9

where the “E” stands for “times ten raised to the
power of.” All you have to do to convert a Scientific
Notation number to a normal number is move the
decimal point over to the right or left by the number
of spaces indicated by the exponent. If you run out of
significant digits, just add zeroes. To convert 3.578E6
to a decimal number, just move the decimal point 6
places to the right:

3.578E6 - 3.578000 — 3578000.

Numbers between 0 and 1 are very similar. You will
recognize them by the negative sign in front of the
exponent. To convert these numbers to decimal num-
bers, move the decimal point to the left instead of
the right:

4.127E-5 - 00004.127E-5 - .00004127

BASIC’s way of only using Scientific Notation when
necessary may seem better to you. However, you
should get familiar with E-Notation anyway—kind
of like having to eat spinach. And for you spinach
haters, we will be giving you a way to have the com-
puter print all real numbers in a non-Scientific Nota-
tion format, later.

Earlier, we listed the numeric operators which
could be used with INTEGERs (+ — * / DIV
MOD). All of these operators can be used with
REALs except DIV and MOD. Note that a REAL
can be combined with an INTEGER using the
operators (+ — * /), but the result will always
be a REAL (i.e., INTEGER + REAL — REAL,
REAL / INTEGER = REAL). Also, two integers
can be operated on by the Real Divide (/), but
again the result will always be interpreted as a
REAL, even if you expect the result to be an
INTEGER. For example, 10 and 5 are both
INTEGERs, but if you divide 10 by 5 using the
real divide (10 / 5), the result will be 2.00000
(which is a REAL), not 2 (which is an INTE-
GER).

45

Pascal is particular about what it considers to
be a REAL. Some versions of Pascal are more
particular than others. UCSD Pascal, for exam-
ple, is very tolerant about entering REALs from
the keyboard (practically any number will be ac-
cepted as a REAL if entered from the keyboard),
but very intolerant when they are used inside the
program. Here are the four rules to follow when
using REAL numbers within a Pascal program:

1. All REALs have decimal points. (Not neces-
sary in UCSD Pascal.)

2. All REALSs have at least one number before
the decimal point.

3. REALs have at least one number after the
decimal point (in most Pascals).

4. All exponents (when used) must be integers.

Here are some examples of legal Pascal REALs:

123.012 1.000
0.12468 5.458E8
85 (in some Pascals) —88.487TE-9
Here are some examples of illegal Pascal REALs:
.11458 (no digit before the decimal)
857. (no digit after the decimal)
1274 (actually an INTEGER, some Pascals
will accept this as a REAL)
8.44E8.4 (can only have integers for expo-

nents)

If the REAL number you are using has more
significant digits than your version of Pascal can
handle, Pascal will just round off your number to
a level of accuracy it can work with. We will use
REAL variables in some programs in Chapter 5.

BOOLEAN Variables

A BOOLEAN variable type is kind of like a
light switch—it can have only two different val-
ues. In the case of the light switch, these two
values are ON and OFF. There isn’t any position
between ON and OFF (unless, of course, you have
a dimmer switch—but that doesn’t count!). The
two values for a BOOLEAN variable are TRUE
or FALSE*, BOOLEAN variables are used in
“program control” when decisions to do one thing
or another have to be made by the computer. Don’t
try to print out the value of a BOOLEAN vari-
able using WRITE or WRITELN or input a
BOOLEAN with READ or READLN—you’ll just
succeed in getting a compiler error (whoever
heard of printing out a light switch, anyway!) t.

* TRUE and FALSE are built-in constant values, just as
MAXINT is.

1 “Standard Pascal” permits output but not input of
BOOLEANs; UCSD Pascal permits neither.

BOOLEANSs are for decision making only, not for
i/o (input/output). We will cover this variable
type in depth in Chapter 6—Program Control
With Decision Making.

LONG INTEGER Variables

This is a special variable type that not all ver-
sions of Pascal have. It allows you to work with
integers that are up to 36 digits long! Since this
gives us many more significant digits to work with
than REAL variables, LONG INTEGERs are used
in place of REALs for most calculations where
accuracy is vital. We will show you how to use
LONG INTEGERs in Chapter 9.

Ordinal Types

Some of the variable types we introduced to
you fall into a special category called Ordinal
Types, mainly INTEGERs, CHARs, and BOOL-
EANs. The name “ordinal” comes from the fact
that the possible values that these variable types
can have are ordered in such a way that this order
can be represented by an integer value.

Recall our explanation of ASCII values and the
CHR function which changes the ASCII value to
its appropriate character representation (pre-
sented earlier in this chapter). Well, there is an-
other built-in routine which does just the oppo-
gite. It is called ORD. Remember we said that
the ASCII value of the capital letter ‘A’ is 65.
We can obtain this value directly by using ORD.
Here is a program fragment using ORD (the vari-
able i must be an INTEGER) :

i := ORD(A");
WRITELN('The ordinal value (ASCII) of A is ’, i);

Upon execution we get:

The ordinal value (ASCIl) of A is 65

So, ORD returns the ordinal value (ordered po-
sition) of an ordinal variable type. ‘A’ is the 65th

46

character in the set of ASCII characters so its
ordinal value is 65.

Since the ordinal value of ‘B’ is 66, we can see
that ‘A’ comes before ‘B’ (since 65 comes before
66). In fact, we can say that ‘A’ is “less than” ‘B’
because of their ordinal values.

ORD can be used with BOOLEAN values. Re-
member that TRUE and FALSE are values (type
BOOLEAN) just as 214 is a value of type INTE-
GER and ’E’ is a value of type CHAR:

ORD(FALSE);
ORD(TRUE);

i will be set to 0
i will be set to 1

i =
i=
This means that FALSE is “less than” TRUE
(everyone knows that).

And finally, if ORD is used on an INTEGER
value, the very same integer will be returned:

ORD(39)
ORD(—1242)

will yield a 39
will yield a —1242

QUIZ—OTHER VARIABLE TYPES

1. Which of the following are legal REALs?

A. 5.012 E. 3

B. .114678 F. 7.000
C. 4.234E34 G. 87.45E-8
D. 8. H. —0.448

2. Convert these numbers to Scientific Notation.

A. 12480000 C. —.000000001147
B. 80 D. 55789

3. Convert these numbers to legal decimals.
A. 8.04879E4 C. —9.4800E10
B. 2.1448E-3 D. 5.148E-9

4. What are the two possible values for BOOLEAN vari-
ables?

5. True or false. Some of the digits in LONG INTERGERs
can be to the right of the decimal point.

6. What is the ORDinal value of the following (for charac-
ters, you may use the ASCII chart in Appendix D)?

A2 D. TRUE
B. 5 E.’ ’(space)
C. —875 F.’ =’ (equals)

chapter 4

Procedures the First Time Around

So far, all of the programs presented in this
book have been relatively short—they all would
fit on one or two crt screens. Recall the philoso-
phy of Pascal that it is wiser to break a program
into small modules, each with a specific purpose
or function, than to write one large, long, and
almost indeciperable program.

In this chapter, we will learn about small pro-
gram modules or ‘“units” which are called PRO-
CEDUREs. A PROCEDURE module is short
enough so that it usually fits completely on one or,
at most, two screens. Each PROCEDURE of a
program can have variables which are valid only
within that procedure (called local variables) or
we can define variables that are common to other
procedures, called global variables.

BUILDING BLOCKS

Each of the programs we have written until
this chapter were composed of a single section
called a block. The block starts immediately after
the PROGRAM Name (which actually gives the
following block its name) and ends at the very
end of the program (Fig. 4-1).

PROGRAM Name;

The order in which these
appear is unimportant

VAR s : STRING;
i : INTEGER;
c : CHAR;
r : REAL;
b : BOOLEAN;

BEGIN
(k Body of PROGRAM x)

END.

\Block
Fig. 4-1. PROGRAM name block.

47

If you went ahead and tried to write a longer
program before you read this chapter, you may
have run into some difficulty with error messages.
Sorry, there is a limit to the size a block in a Pas-
cal program can be*, The solution is to break the
one large block into smaller blocks, each of which
is no longer than one or two screensful. These
smaller blocks are called PROCEDURESs. A Pro-
cedure looks almost exactly like a program
(Fig. 4-2).

PROCEDURE Name; <~ Note the word PROCEDURE

VAR s : STRING;
i : INTEGER;
¢ : CHAR;
r : REAL;
b : BOOLEAN;

BEGIN

(* Body of PROCEDURE *)

END; <«——————— Note the semicolon

W.Block
Fig. 4-2. PROCEDURE name block.

There are only two major differences between
the structure of a procedure and the structure of
a program:

1. The keyword PROCEDURE is used in place
of the keyword PROGRAM.

2. The semicolon terminates a procedure block
instead of the period which is used for a
program.

As you can see in this example, a procedure is also
considered to be a block. Since programs can be
made up of a number of procedures, we can have
small blocks (procedures) within the larger block
of the program. The program block is called the

* About 1200 bytes in Apple Pascal.

\\\\\\
\\\&\\
o

A
‘ \

AN

\
IR k““\\\
\\\\\\\\ \\\\\ \\\\\\\\\\\

\\\\\\\\\ “\
\ \\\\\\\

k

AN
3 \\\\\\\ /
\i\‘\}\\\ I &?&“
0
il U2
s TN 1
4 S T
I:-J e
{
o h

“RS.F

outer block, and the procedures are called. the in-
ner blocks. An example is illustrated in Fig. 4-3.
Yes, we know it looks more complicated than our
one block program, but hold on for now. First
look at the end of the program where the proce-
dures defined as inner blocks are used (Fig. 4-3).
There is a comment which says this section is the
“Main Program.” Then the names of the PRO-
CEDUREs appear (Partl, Part2, Part3) and
then the final END (with its period). This sec-
tion is the control section of the program. When
the program is executed, the computer looks at

48

this list at the end (between BEGIN and END)
and executes each procedure in order of appear-
ance. The closest thing to PROCEDURESs in BA-
SIC is the subroutine (GOSUB-RETURN). A
definite advantage in Pascal (and one that shows
GOSUBs to be less than perfect) is that each
PROCEDURE has a name which is used to de-
scribe what the PROCEDURE does. Writing the
name in the Main Program section (or elsewhere
in the program) calls that procedure into action
when the program is executed. This means that
to understand what a program is supposed to do,

PROGRAM Name;

VAR s : STRING;
i : INTEGER;
c : CHAR;
r : REAL;
b : BOOLEAN;

PROCEDURE Part1;

VAR i : INTEGER;
BEGIN

(* Body of PROCEDURE Part1 *)

END; (* Part1 *)

PROCEDURE Part2;

VAR s : STRING;
BEGIN

(* Body of PROCEDURE Part2 *)

END; (* Part 2 *)

PROCEDURE Part3;

VAR i : INTEGER;
BEGIN

(* Body of PROCEDURE Part3 *)

END; (* Part3 *)

BEGIN
Part1;
Part2;
Part3;

(* Main Program *)

END. (* Main Program *)

Fig. 4-3. Combining program and procedure blocks.

just look at the Main Program section at the end
and read it just as you would an outline of a book
or a flowchart for a computer program. The fan-
tastic thing about Pascal is that this structure en-
ables you to write very complicated programs
without getting lost in the code—if the program
is well written, you'll find a “summary’” available
for reference between BEGIN and the final END!
Again, each PROCEDURE is like a subroutine
that is called by just using its name in the pro-
gram ; no more trying to remember what GOSUB
9999 means!

Take a look at the next program (Listing 4-1)
which is a new version of the program Inputting
called RevisedInputting, rewritten to demonstrate
PROCEDURES. The program is simple enough so

49

that PROCEDURES really aren’t necessary, but
we wanted to let you make a comparison between
the two programs. The execution of the two ver-
sions will look exactly the same. Notice that the
structure of the procedures is similar to the pro-
gram structure we used previously. There is a
PROCEDURE Name section (which looks like the
PROGRAM Name section), the word BEGIN, the
body of the procedure, and the word END. How-
ever, since it’s only the END of the procedure,
and not the end of the main program, we use a
semicolon after the word END instead of a pe-
riod. Comments are used to indicate which proce-
dure has just ended. Use about 2 or 3 klank lines
to separate procedures from each other.

As we said before, the first step to comprehend-
ing a Pascal program is to look at the end of the
program and see a summary of what it will do.
The first procedure to be called in our program
RevisedInputting is named ClearScreen. Find this
procedure at the beginning of the program. All it
does is clear the screen using the PAGE state-
ment. As we said before, we will be using PAGE
in our programs from now on. (If PAGE(OUT-
PUT); doesn’t work in your version of Pascal,
just rewrite the ClearScreen procedure using the
information from Chapter 3 on clearing the screen
by writing an ASCII code.) We have essentially
created a new customized Pascal statement espe-
cially for this program called ClearScreen. When-
ever we write the word ClearScreen in this pro-
gram, this procedure will be executed and the
screen will be cleared. Seeing the procedure name,
ClearScreen, in the program is much clearer than
seeing WRITE(CHR(12)); or even PAGE(OUT-
PUT). Here’s one of the “fundamental truths”
of Pascal: If Pascal doesn’t have a specific com-
mand or routine to do what you want, you will
eventually have the tools to create the command
or routine yourself, then name it whatever you
like.

The next three procedures on the list, GetName,
GetAge, and Revelation, are self-explanatory . . .
look at them now. Finally, the ClearScreen proce-
dure is called again and the program ends.

GLOBAL AND LOCAL VARIABLES

Take another look at the beginning of our
RevisedInputting program, and compare it with
the Inputting program of Chapter 3. You’ll no-
tice that only one of the four variables used in
RevisedInputting (Difference) is declared at the
beginning of the program. The rest of the vari-
ables are declared at the beginning of the proce-

Listing 4-1.
PROGRAM RevisedInputting;

(# Program to demonstrate the use of PROCEDURES, REARDLN,
COMMENTS, and how to clear the screen using PAGE. %)

URR Difference: INTEGER;

PROCEDURE ClearScreen;

(% If PAGE(QUTPUT) won't clear your screen, use CHR to
write the ASCII code which will clear your screen *)

BEGIN
PAGEC(OUTPUT);
"END; (% ClearScreen %)

PROCEDURE GetName;
vaR Mame : STRING;

BEGIN

WRITELN;

WRITE(' Hello there, what is your name? *);

READLM{ Name);

WRITELN;

WRITELNC Oh yes, ' ,Mame,’, I should have known!‘ J;
END; (% GetMName *)

PROCEDURE Getfge;
VAR Age : INTEGER;

BEGIN
WRITELN;
WRITE(" Tell me, how old are you? ’ J;
READLN(Age J;

Difference = 180 - Age;
END; (% GetAge #%)

PROCEDURE Revslation:
VAR Continue : STRING;

50

BEGIN
WRITELN;
WRITELN:
WREITELNC Do you know that
WRITELNC you® ” 1
GOTOXY(7,133;
WRITEC(’ Press "RETURN"®
READLN(Continue J;
END; (% Revelation %)

2

in

to aend: ’);

BEGIN (% Main Program #)
ClearScreens;
GetMName;
GetAge;
Revelation;
ClearScreen;
END. (% RevisedInputting #%)

dure in which they are used. Each variable is valid
only within the block (procedure) in which it is
-declared. This means that in the GetAge proce-
dure there is no such variable as Name and in the
Revelation procedure there is no such variable as
Age, ete. If a variable is declared within a proce-
dure, it is only valid within that procedure. We say
that a variable is local to the block in which it is
declared—it has no influence outside that block.
Then why, you may ask, is the variable Difference
declared at the beginning of the program? Be-
cause this variable is used in more than one pro-
cedure, it must be declared at a higher level (outer
block). Since all three procedures lie within the
block in which Difference is declared, all three
procedures can access this variable. We say that
the variable Difference is global to the other pro-
cedures. A variable is global if it is valid in an
inner block because it was declared in an outer
block. We also say that the domain in which a
variable is valid or accessible is called the scope
of that variable. The scope of the variable Dif-
ference is the entire program. The scope of the
variable Age is the procedure GetAge.

Side Effects

It’s a very good practice to make variables as
local as possible, to limit their scope to only the
procedures in which they are needed. Recall the
problem we mentioned which can occur in BASIC
—when you change or update a spzcific section of
a program, a bug appears in a totally remote part
of the program. This is usually the result of a side

TDifferencea,’
be 188 years old?17?);

51

years" };

effect which is caused by reusing a variable which
appeared in that remote corner of your program.

Look at the program in Listing 4-2, Duplicate
Names. You’ll notice that we declared the variable
name Sum in the outer block and again the inner
block. Even though the name is the same, these are
two separate and distinct variables. Here is a run
of this program:

2
10

o=

o I

1
5
S

5++

After clearing the screen, we add two ones to-
gether (1 + 1), store the result in Sum, and print
the results on the screen. Then we call the Add
procedure which places the sum of two 5s into
Sum and prints out the result. However, since
this Sum was declared in Add, it is local to this
procedure—it is totally unrelated to the global
Sum in the Main Program section. We can prove
this when we return to the Main Program section
and again print out the contents of Sum. It still
has the sum of one plus one in it—calling Add
had no effect on the global Sum. This shows the
two Sums to be separate variables.

If an inner block uses an identifier (variable
name) which was declared in an outer block, the
outer block variable (global) becomes inaccessible
to the inner block and the local variable “takes
over.” This is called name precedence. This means
that if you declare some new variables in a proce-
dure while you are modifying that procedure, you

don’t have to worry about whether or not these
variables’ names were used elsewhere in the pro-
gram! When there is any question as to which
variable is in effect, the most local variable al-
ways wins.

Listing 4-2.

PROGRAM Dupl icateMNames;
UAR Sum : INTEGER;

PROCEDURE ClearScrean;

BEGIN
PAGECQUTPUT 3;
END; (% ClearScreen %)

PROCEDURE Add;
VAR Sum : INTEGER;

BEGIN
Sum = 5 + 53
WRITELN('S + 5 = ° Sum);
END; (* Add %3

BEGIN (#% Main Program #)
ClearScreens;
Sum = 1 + 13
WRITELM:
WRITELNC(' L + 1 = ' ,5um);
Add;
WRITELN(’ Sum =
END. (% DuplicateMamas #%)

, Sumd;

On the other hand, if you make use of global
variables when modifying a procedure, you still
must watch out for side effects!

A Stolen Procedure

Take another look at the DuplicateNames pro-
gram. The first procedure called by the Main Pro-
gram is an old friend of ours, the ClearScreen
procedure. It’s the same procedure we used in the
RevisedInputting program. We stole it! It is pos-
sible to save a library of often used procedures
like this one on a disk. When you want to use one,
just load it in as you are editing your program.
(Hopefully, the Editor you are using allows you
to “append” like this.) Each procedure is thought
of in terms of its overall generality . . . make it
as universal as possible so you can use it every-
where!

52

PROCEDURES CALLING PROCEDURES

How about having one procedure which calls
another procedure? Consider the example shown
in Listing 4-3. Here is a run of this program.

This is an example of how one procedure
can call another procedure . . .

Press “RETURN” to continue:

There we are . . . let's do it again . . .

Press “RETURN” to continue

Good bye for now!

When one procedure calls another, it is important
to pay attention to the order in which they appear
in the program. The compiler has to know what
an identifier means in order to compile its corre-

Q)

'O\ @ O @) ©
o6 AN . IO, GIOTON, LG TO)
OB IO B DO Ok
PROCEDURED R-Z
——‘_//U”U‘ / // R

{

»,

7

e

e

I G

‘W

TR

AN

CTRCTCEAI

N

2)

(m

>

(2%

—

7

sponding code into the program later on. In this
case, the ClearScreen procedure is defined first so
that when the computer sees the word Clear-
Screen later in the Continue procedure, it knows
exactly what to do. If we were to reverse the or-
der of these two procedures, the compiler would
see the word ClearScreen and not know what it
means, then it would tell you that there is an “Un-
declared Identifier”*, You can think of procedure
names as new vocabulary keywords or commands
for the computer and the actual procedure as the

* There is a way to get around this problem with the
FORWARD reference—see Chapter 8.

VY Y A AT

Y

// ,

53

—
R e ——

.
A NN
==

(
N

i)
2

definition of these words. The compiler has to have
the word in its vocabulary before it can use it to
define another vocabulary word! It’s not smart
enough to scan the rest of the program for hints.
Too bad! If none of the procedures are called by
any of the other procedures, then the order in
which they appear in the program isn’t critical
for the program to run. But following the order
in which the procedures are called is desirable for
increased clarity and readability**.

#% It’s possible for a procedure to call itself! This is
called recursion and is an advanced topic you can wrangle
with in other books.

NESTED PROCEDURES

It is possible to have one procedure nested
within another procedure. The example in List-
ing 4-4 tries to shed some light on this country’s
taxation scheme. The United States is divided up
into states which are divided up into counties
which often have a bunch of cities in them. As
you can see, there are a number of block levels
in this ‘“program”—four to be exact. Here is a
diagram to help you see the blocks:

PROGRAM Taxes
VAR FederalTax

PROCEDURE California
VAR StateTax

PROCEDURE SonomaCounty
VAR CountyTax

PROCEDURE Petaluma
[VAR CityTax

PROCEDURE MarinCounty
VAR CountyTax

PROCEDURE Sausalito
| VAR CityTax |

PROCEDURE MillValley
[VAR CityTax |

PROCEDURE NewYork
VAR StateTax

PROCEDURE DuchessCounty
VAR CountyTax

PROCEDURE Poughkeepsie
{ VAR CityTax |

PROCEDURE WappingersFalls
[VAR CityTax |

The outermost block is the entire program—the
only variable which is global to the entire program
is FederalTax, which, as we all know, everyone
has to pay. No matter where you live in this pro-
gram, FederalTax is valid and (unfortunately)
accessible. The next block level has two state pro-

54

cedures, California and NewYork. StateTax for
California is payable anywhere within the Cali-
fornia procedure but not within the NewYork pro-
cedure. These two procedures both have a variable
named StateTax, but these are two separate vari-
ables. The money that goes into NewYork’s State-
Tax will not accidentally find its way into Cali-
fornia’s StateTax.

Within California and NewYork are a num-
ber of counties. In California, the next block level
has two procedures—SonomaCounty and Marin-
County. Again, both of these procedures have a
variable with the same name, CountyTax, and
these are two distinet variables. People in So-
nomaCounty and MarinCounty have to pay their
CountyTaxes, California StateTaxes, and, of
course, their FederalTaxes,

Finally, the innermost blocks are made up of
the cities and again we are using a number of
totally distinet CityTax variables. So, the lucky
residents of MillValley get to pay MillValley
CityTax (local to their block level), MarinCounty
CountyTax (global to their block level), Califor-
nia StateTax (global to their block level), and,
of course, U.S. FederalTax (global to all blocks).
MillValley taxpayers don’t have to pay city,
county or state taxes that do not have any scope
in MillValley (e.g., WappingersFalls, Sonoma-
County, or NewYork).

Looking at this from the other direction, the
variables of the inner blocks have no validity in
the outer blocks. If a Poughkeepsie resident tries
to send his CityTax to the U.S. Government (outer
block), the IRS will eventually figure out that it
is not FederalTax and send it back with a polite
note of correction (Compiler Error).

Keep track of the scope of your
variables! Uncle Pascal says: If I
try to spend my francs in o Denver
. Doughnut shop, I won't even end up
with holes!*

Quiz

True or False

1. If a procedure is less than one screenful, it is probably
too short.

2. It is not really necessary to use procedures when a pro-
gram gets very large.

3. Follow the same Pascal variable naming rules when you
name your procedures.

* Note from the authors to the readers: Sorry, but the
deal we made with Uncle Pascal was a package deal—we
either had to take “all his witticisms or nothing.”

Listing 4-3.
PROGRAM PagingDemo;

PROCEDURE ClearScreen;
BEGIN

PAGE(OQUTPUT };
END;: (% ClearScreen *%)

PROCEDURE Continue;
VAR Cont : STRING:

BEGIN
GOTOXY(5,22);
WRITE(’ Press "RETURN" to continue: ’);
READLMN(Cont);
ClearScreen;
END; (% Continue %)

BEGIN (* Main Program %)}
ClearScreen;
WRITELMN(’ This is an example of how one procedure’);
WRITELMNC(can call another procedure...’” };
Continue;
WRITELNC(' There we are... let’’'s do it again...’)3
Continue;
GOTOXY(11,18);
WRITELNC Good bye for now!’ J;
END. (% PagingDemo %)

Listing 4-4.

PROGRAM Taxes;
VAR Federal Tax : REAL;

PROCEDURE Californias
VAR StateTax : REAL;
PROCEDURE SonomaCounty:
VAR CountyTax : REAL;
FROCEDURE Petalumas
VAR CityTax : REAL;
BEGIN

END; (% Pataluma %)

BEGIN (% SonomaCounty %)
Petaluma:
END; (% SonomaCounty #)

PROCEDURE MarinCounty;
UAR CountyTax : RERL:
PROCEDURE Sausal ito;
UAR CityTax : REAL;

BEGIN

END; (#% Sausalito #*)

55

PROCEDURE MilitUalley;
VAR CityTax : REAL;
BEGIN

END: (% MillUalley %)

BEGIN (# MarinCounty %)
Sausal itos
Mililalley;

EMD; (% MarinCounty *)

BEGIN (% California %)
SonomaCounty;
Mar inCounty;

EMND: (% Califorria %)

PROCEDURE MewYork;

VAR StateTax @ REAL;
PROCEDURE DuchessCounty;
UAR CountyTax : REAL;

PROCEDURE Poughkeepsie;
UAR CityTax : REAL;
BEGIN

END: (% Poughkeepsie %2

PROCEDURE WappingersFalis;
UAR CityTax : REAL;
BEGIN

EMD; (% MWappingersiallis #)

BEGIN (% DuchessCounty %)
Poughkeepsie;
Wappingersfalls;

END; (#* DuchessCounty %)

BEGIN (#* NewYork %1
BuchessCounty:
END; (% NewYork *)

BEGIN (% Main Program %)
California:
MewYork;

END. (% Taxes #*)

4. One procedure can call another procedure. 6. If a variable is global, it can’t be a local variable.

5. Pascal automatically scans the entire program for the 7. If two variables in different block levels have the same
definition of a procedure before it gives you an error mes- name, the one in the outermost block is active and the
sage during compilation. one in the innermost block is ignored.

56

chapter 5

Program Control With Loops

Up to now, all of the programs have been very
simple, even though they may have been some-
what lengthy. We say “simple” because when
they were run, they just started by executing
the first statement, then the second statement,
the third, and so on until all statements were
executed. Kind of like dropping a stone off of a
building—it keeps falling and passing floors un-
til it hits the ground. The stone doesn’t say, “I
think I’ll go back up to the fourth floor and do
that again!” or “I’'m going to jump off of this
building 23 times or until it starts to rain.” There
is no change in direction, no repetition, or no de-
cision to make. It just drops.

So much for stones. Computers are somewhat
more “intelligent”’—they can make decisions of a
sort. This chapter and the following two chapters
will show you how to put some intelligence into
your programs. In this chapter, we will introduce
you to the use of the FOR loop and a Loan Pay-
ment Program.

THE FOR STATEMENT

The FOR statement is used to make a statement
(or series of statements) execute a specific num-
ber of times. 1t is similar to BASIC’s FOR-NEXT
statements. Consider the following BASIC and
Pascal examples:

BASIC Pascal
10 FOR I=1 TO 20 FOR i := 1 TO 20 DO
20 PRINT | WRITELN(i);
30 NEXT |

Both examples will do exactly the same thing
when they are executed. Note the differences be-
tween the two. The main differences are that
Pascal doesn’t have an equivalent to NEXT and

57

BASIC lacks a DO. The exact structure for the
Pascal FOR statement is:

FOR control-value := initial-value TO final-value DO

statement;

where all of the values (control, initial, final)
are of the same ordinal type; we'll just cover type
INTEGER for now. These values can also be ex-
pressions (e.g., x + 5), but the expression is only
evaluated once when the FOR statement begins
execution. If the value of the final-value expres-
sion changes during the execution of the loop, Pas-
cal will just not care.

The word statement can be an assignment state-
ment (Food := ’okra’;), a procedure name (to
call a procedure), or any other executable Pascal
statement—even another FOR loop !*

Here is the way the FOR loop works:

1. The control-value is automatically initial-
ized to the initial-value.

2. Pascal checks to make sure that the control-
value is not larger than the final-value. If
it 7s larger, the FOR loop is terminated and
the next statement is executed.

3. The statement** (or body of the loop) is exe-
cuted. :

4. The control-value is incremented by one.

5. Go to #2

Many BASIC users make use of the fact that the
value of the control-value (or index) will be set
to one greater than the final-value when the FOR

* See examples of mested FOR loops in Chapter 10,
page 147.

#* Note that only one statement is under the control of
the DO loop. We’ll cover multiple statements in the up-
coming Compound Statement section.

Rum\ser Oflgaps: =10;

Lyap:

) 7 \
o ant %‘,‘
O [,.,1 m umbef an e el e
BRNSS 4 RS "
%)
:“ "‘0‘0 /e

AN N S easeosere

AR
W \ D

I AR
Q

3 \/Y

vl

»
3
IN

)
Q

il

o T

RSFox

loop terminates. In Pascal, the value of the control-
value is undefined at the termination of the loop,
so don’t depend on it in your programs.

Now for some practical programs using the
FOR statement. Let’s say we want Pascal to add
all of the integers from 1 to 10. We could do it
this way:

Sum:=14+2+4+34+4+5+64+748+4 9+ 10;
WRITELN(Sum);

but that’s kind of awkward, especially if we want
to later add together all of the integers from 1
to 100! It is important to generalize your program
code whenever possible. So, using FOR we get the
program shown in Listing 5-1.

The output for this program is:

The sum of the integers from 1 to 10
is 65

By using a variable in place of the 10 and us-
ing READLN, we can make this loop (called a

58

summation) into an interactive program (List-
ing 5-2).

Here are a couple of executions of this program:
(1) Enter the top value: l()}_)

The sum of the integers from 1 to 100
is 6050

(2) Enter the top value: 250

The sum of the integers from 1 to 250
is 31375

Let’s learn more about looping in Pascal through
its use in mathematics.

Exponents in Pascal

Let’s say we have a number that we want to
multiply by itself (squared):

3 *x 3

Now let’s multiply it by itself once more (cubed) :

Listing 5-1.

PROGRAM AddIntegersl;

VAR i, Sum INTEGER;
BEGIN
Sum = B;
FOR i+ := 1 TO 18 DC
Sum = Sum + i;
WRITELNC The sum
WRITELMC

END.

of the
YL, Bum
{(# AddIntegersl %)

is

3 %3 %3

In BASIC, either of these operations could be done
with the exponentiation operator (1), as indicated
in these examples:

312
313

is the same as 3*3
is the same as 3*%3%*3

Unfortunately, Pascal does not have a built-in ex-
ponentiation operator (much gritting of teeth).
It would be simple to just multiply the numbers
times themselves using the * operator if we only
want to square or cube the number. But what
about 3.45°? Or what about when the exponent
is to be entered via the keyboard as a variable?
The answer is a Pascal program which uses a
FOR statement to simulate the exponentiation op-
erator. It is based on the fact that raising a num-
ber to a certain power is really just a series of
consecutive multiplications of that number times
itself (Listing 5-3).
Here is a sample run of the program:

integers from 1

to 18°);

Enter the base number: 1.28
Enter the exponent: 18

The final result:
1.28000 1 18 = 8.50707E1

Here is how it works. The first step is to input
the data. Next, we set the variable Temp to 1. This
variable will hold the temporary products of the
consecutive multiplications. When the FOR loop
is finished, the final value will be in Temp. This
routine will handle any positive integer exponent,
including 0. If the exponent is 0, then the FOR
loop will not cycle at all, since the initial value
(1) will start out greater than the final value (0).
This will not yield an error in our result—the
value in Temp will remain unchanged (1). This is
as it should be since any number raised to the 0
power is 1:

X0 =1

What will happen if you use a negative exponent?
The same thing as using a 0 for the exponent. It

Listing 5-2.
PROGREAM AddIntegersss
UAR i, Sum, TopUalue : INTEGER;
BEGIN

WRITE(Enter the top value: 7)3
REARDLN(Topiaiuvue);

WREITELN;

Sum = §;
FOR i ==
Sum =

1 TC Toplalue DO
Sum + i3

HWREITELMN(’ The sum of the
WRITELNMNC
END.

is 7 ,Buml;

(% AddIntegars? %)

intaegers from 1 to ~ ,TopValuel;

Listing 5-3.

PROGRAM Exponentiationl;

UAaR REAL;

INTEGER;

Number,
Power, i

Temp =

BEGIN
WRITE(’ Enter the base number: °);
READLNT Numbear);
WRITEC Enter the exponent:
RERDLMN(Power);

‘)

WRITELN;

Temp := 13

FOR i = 1 TQ Power DO

Tamp = Temp #% Number;

WRITELN;

WRITELNC The final result:’);

WRITELNCS Ly Mumber,’ 1t ,Power,’ =
END. (#% Exponentiationl »)

won’t bomb out, but it also won’t give us the right
answer. If you try to enter a real number as the
exponent, Pascal will either ignore everything af-
ter the decimal point or “bomb out” (depending
on which version of Pascal you have).

VARIATIONS ON FOR

Before we go on, we want to introduce some
variations on the FOR loop.

Looping With DOWNTO
The first variation will allow you to count back-
wards by decrementing the control-value:

FOR control-value := initial-value DOWNTO final-value DO

statement;

Just substitute the word DOWNTO for the word

TO and make sure that your initial-value is larger
than your final-value (or the computer will skip
the FOR loop). Here is an example that will count

backwards from 20 to 1:

FOR i := 20 DOWNTO 1 DO
WRITELN(i);

Counting by Twos

Unfortunately, Pascal doesn’t have a built-in
method to count by a specific step as BASIC does.
Here is a loop which counts by twos:

FOR i := 1 TO (100 DIV 2) DO
WRITELN(i * 2);

60

", Temp i;

On execution, we'd get:

OO AN

100

A more general formula to count from Start to
Finish by Step is:

FOR i := Start TO (Finish DIV Step) DO
WRITELN(i * Step);

Counting Without Numbers

The third variation may sound a little strange
to those of you who grew up on BASIC. It allows
you to count with letters instead of with integer
numbers.

Recall that we said that the values in a FOR
statement must be of the ‘“same ordinal type.”
This means that in addition to using INTEGERSs,
we can use CHARs (or even BOOLEANs). The
program in Listing 5-4 will print the letters of the
alphabet on the screen in order, and then in re-
verse order.

Here is a run of this program:

Here is the alphabet:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

And here is the alphabet backwards:
ZYXWVUTSRQPONMLKJIHGFEDCBA

Listing 5-4.

PROGRAM Al phalrite;

VAR Ch CHAR;

BEGIN
WRITELNC' Here is the alphabet:’ J;
FOR Ch := "R/ TO "Z" DO

WRITE(ChI;

WRITELMN;
WRITELM;

WRITELMNC’ And here is
FOR Ch := “Z° DOWNTO
WRITEC(Ch);

(% Alphallrite %)

"A® DG

END.

Of course, you aren’t confined to just using the
letters of the alphabet. The initial and final val-
ues can be any ASCII character.

We aren’t sure why you would want to use
BOOLEAN variables as the values in a FOR state-
ment, but it can be done as shown in Listing 5-5.

Listing 5-5.

PROGRAM BooleanWrite;
VAR Boo : BOCLEAN;:

BEGIM
FOR Boo := FALSE TO TRUE DO
WRITELN{ORD(Boo));

END. (% Booleanlrita #3

And the run of this program:

1

We are writing out the ORDinal value of the vari-
able Boo because if you try to write out the vari-
able itself (WRITELN(Boo);) you will just get
a compiler error. BOOLEAN variables are used
for logic flow (as you will discover in the upcom-
ing IF-THEN section of Chapter 6), and not for
data input/output (in UCSD Pascal).

COMPOUND STATEMENTS

You might be wondering what to do if you have
more than one statement that you want to exe-
cute a certain number of times. In BASIC, it’s
simple—everything between the FOR line and the
NEXT line will be repeated. Let’s say we wanted
to observe the computer’s progress as it did a sum-
mation. Look at the following example:

the alphabet

61

backwards:’);

Sum = 0;

FOR i := 1 TO 10 DO
WRITELN(Sum);
Sum := Sum 4 i;

The output will be a series of zeroes because only
the WRITELN statement is under the control of
the FOR loop (even though the indentation we
used may lead you to believe otherwise). This
brings us to the Pascal Compound Statement. Here
it is:

BEGIN

statement 1;
statement 2;

statement n;
END; ,

That looks strangely like the innards of a Pas-
cal program or procedure. The words BEGIN and
END are not statements. They are reserved words
with a special function called delimiters. They ac-
tually show the BEGINning and ENDing limits
of the compound statement. A compound state-
ment is treated in exactly the same way as a
single statement and can be used in place of a
single statement. Therefore, wherever you see the
word “statement” in our syntactical descriptions,
you may use a compound statement. The example
from the beginning of this chapter becomes:

Sum = 0;
FOR i := 1 TO 10 DO
BEGIN
WRITELN(Sum);
Sum = Sum + i;
END;

And the general FOR statement becomes:

SNk
ol
TN

\5‘\3"2———:\\,""1" A SR o — A = kAN :
D D WD DD W B DD B v
\V{‘ N
. o
FOR control-value := initial-value TO final-value DO BEGIN BEGIN
BEGIN statement 1; statement 1;
statement 1; statement 2; statement 2;
statement 2; H 4
: * note the absence of
: : a semicolon
¥ statement n; statement n
statement n; END; END;

END;

Everything between the BEGIN and
the END will be under the control
of the FOR statement. As Uncle
Pascal says: Where the trunk and
tail go, so goes the elephant!

BY THE WAY ...
More on Semicolons

There is a rule in Pascal that all statements must
have a semicolon after them. Since the word BEGIN
isn’t a statement (it’s a delimiter), that explains
why it doesn’t have a semicolon following it. But
what about the word END? It too is a delimiter. The
answer lies in the fact that a compound statement is
treated exactly like a single statement. Since a'single
statement requires a semicolon following it, so does a
compound statement. This means that the semicolon
following END is actually the semicolon that is fol-
lowing the entire compound statement.

Semicolong are used to separate successive Pascal
statements. So, if END isn’t a statement, why do
we need to have a semicolon between the last state-
ment in a compound statement and the delimiter
END? The answer is we don’t! The last semicolon
before an END is optional. We have been using a
semicolon in this position to make things easier for
you to remember. Both of the following examples are
correct:

62

Empty statement

This may seem surprisingly inconsistent for a struec-
tured language like Pascal. AHA! There is really no
inconsistency here. This is because there is something
called an empty statement following statement n; in
the first example, and the semicolon is separating
statement n from the empty statement. The reason
you can’t see the empty statement is that it is IN-
VISIBLE. The empty statement was apparently in-
vented just so the semicolon before an END would
be optional. Uncle Pascal would just love it! All this
time you have been writing invisible empty state-
ments in your programs and you didn’t even know it!

The truth is that we could place an empty statement
after the delimiter BEGIN and no problem would be

reported:
empty statement

BEGIN; .~

statementl;

But the convention is to not do this so we won’t. How-
ever, we will continue to write empty statements in
our sample programs (alas, poor typesetter). We
mention this here to clear up the apparent inconsis-
tency and to explain why Pascal programs from
other sources may not have the semicolon immedi-
ately before END.

Using the Compound Statement

Let’s take the exponentiation program and use
a compound statement. Listing 5-6 shows a mod-

Listing 5-6.
PROGRAM ExponentiationZ;
UAR Mumber, Temp : REAL;
Power, i : INTEGER;
BEGIN
WRITE(' Enter the base number: ’);
READLM(Number };
WRITE(Enter the exponent: ‘' });
READLN(Power);
WRITELN;
Temp = 1;
FOR i =1 T0O Power DO
BEGIN
Tamp = Temp * Number;
WRITELN(Mumber,’ 1 ,i,’ =" ,Temp]l;
EMD;
WRITELN;
WRITELNC® The final result:’);
WRITELN(" yNumber,’ 1t ,Power,’” =" ,Temp);
END. (% Exponentiation? %)

ification which will allow you to observe the pro-
gress of the consecutive multiplications. Here is
a sample run of this program:

Enter the base number: 1.41421
Enter the exponent: 6

14142111 = 1.41421
1.41421 12 = 1.99999
1.4142113 = 2.82841
1.41421 14 = 3.99996
1.4142115 = 5.65678
1.4142116 = 7.99988

The final result:
1.41421 16 = 7.99988

The number we used as the “base number” in
this example may look familiar to you. It is the
square root of 2. Take a look at the result we get
when we square 1.41421—it’s almost 2.0, but not
quite. Now take a look at the results for our base
number raised to the fourth and sixth powers. The
answers to these calculations should be 4.0 and
8.0, respectively. This is what happens when you
start out with a number with a small accuracy
error in it and then work with it. The error in
accuracy gets larger and larger. This means you
can’t trust your computer’s calculations to be per-
fectly accurate when you are working with REAL
numbers, especially small REALs. The solution

63

is to use a combination of LONG INTEGERs
(which can have up to 36 digits of accuracy) and
STRINGs. We will show you how to do this in
Chapter 9.

BY THE WAY ...
Changing the control-value During Execution

In some versions of BASIC it is admissible to change
the value of the control-value (index) within the
FOR loop. This might be done to force the loop to
terminate prematurely by setting the control-value
to the final-value. It is important that you never try
to do this in Pascal (Uncle Pascal hates to leave
something unfinished.) For example, this is incor-

rect:
FOR i := 1 TO 100 DO
BEGIN
Count := Count 4 i;
i =14 10; Wrong! (Changing the
END; control-value)

THE LOAN PAYMENT PROGRAM

We will now present a program which you will
find extremely valuable in these times of outra-
geous interest rates. You can use it to help talk
yourself out of applying for a loan or make sure
you don’t let your charge card get out of hand!

Most people have had to take out a loan from
a bank, credit union, or other lending institution

at one time or another. Have you ever wondered
how the bank figures your monthly payment? Or
did you ever wish you could check to see if their
figures were right ? This next program uses every-
thing we have learned so far to calculate the regu-
lar payment on a loan.

The banks figure out your regular loan pay-
ments by using special tables of figures. There is
also a special formula that tells you how much
your regular payments should be to pay off your
debt. It’s called an amortization loan formula and
it looks like this:

RegularPayment =

Principal X InterestPerPeriod
1 — (InterestPerPeriod - 1) —NumberOfPayments

Don’t Go Away! Before you say “Oh Nooo!”
and close the book, we want you to know that it’s
not necessary to understand this formula in order
to follow our next program example. If you like
math, then enjoy! Otherwise, skim the explana-
tions on the Loan Formula and center on our dis-
cussion of the program itself.

The Formula

What the formula says is this: Take the total
amount borrowed (the principal), the interest
rate, and the length of time you have in which to
pay back the loan, then perform the calculations
to obtain the regular payment. The interest rate
(InterestPerPeriod) is not the yearly rate. It is
calculated by dividing the yearly interest rate
(called Annuallnterest rate) by the number of
PaymentsPerYear. The total NumberOfPayments
is found by multiplying the number of Payments-
PerYear by the number of years of the term
(TermInYears). What follows is a program based
on this formula called Loanl (Listing 5-7). First,
here are a couple of sample runs of the program.
The first might be for a car loan (this book is be-
ing written during a period of high interest rates;
we hope that they are much lower now!). The sec-
ond run is an example of what you would have to
pay if you were buying a $100,000 house and fi-
nancing 80% of it (20% down).

(1) ** LOAN PAYMENT **

Enter amount of loan: 4000
Enter the annual interest: 20
Enter payments per year: 12
Enter term in years: §

Regular payment = $ 1.05976E2

That's all folks . . . BYE

64

(2) ** LOAN PAYMENT **

Enter amount of loan: 80000
Enter the annual interest: 15
Enter payments per year: 12
Enter term in years: 30

Regular payment = $ 1.01155E3

That's all folks . . . BYE

The Program

The first step in our program is to clear the
screen. Next, in the GetData procedure, we input
our Principal, Annuallnterest rate, number of
PaymentsPerYear, and the TermInYears. The
next procedure, Calculate, is the most important
section of the program. The first thing you’ll no-
tice is that we included a version of the exponen-
tiation routine (introduced earlier in this chap-
ter) as a nested procedure called Power. We did
this to make Power local to the Calculate proce-
dure. Yes, procedures can be thought of as local
or global just as variables can. Since Power is
local to Calculate, no other procedure can call
Power. The same rule that holds for variables
holds for procedures—it’s wise to make them as
local as possible. Since the only procedure in this
program which accesses Power is Calculate, we
decided to place Power within Calculate so that
all of Calculate’s variables become global (acces-
sible) to Power without having to be global to the
entire program, thus protecting them from acci-
dental tampering.

After the InterestPerPeriod and the Number-
OfPayments are calculated, the nested procedure
Power is called. To make this procedure clearer,
we are setting x to the base number (the number
to be raised by an exponent) and y to the expo-
nent. The variable Temp will contain the result.

Next, we’ll calculate the RegularPayment. If
you look at our loan formula, you’ll notice that
it calls for us to raise a number by a negative
exponent. You'll recall that our exponentiation
routine can’t do this. Raising a number to a nega-
tive exponent is the same as raising the number
to a positive exponent and then dividing the re-
sult into 1.

|
N ~ Ne
or
1 1
e R
5% = 55 = 75 = 0.008

So, this is what we are doing.

Finally, we print out our result in the Print-
Answer routine, and then exit the program with
END.

EXPANDING A PROGRAM

There is an old computer proverb which states
that the closer a program is to being completed,
the more extremely important things you will dis-
cover to add to it. No problem—adding to or re-
vising a Pascal program is actually quite a simple
task, because of Pascal’s modularity. For exam-
ple, consider an enhancement of the loan program
that computes the actual total interest you are pay-
ing on the amount borrowed. In order to calculate
this, we must first find the total amount that is
to be paid to the bank by multiplying the regular
payment by the total number of payments. Then
subtract the actual principal that was borrowed.
What is left is the amount of the loan which is
going toward the interest. Here is the formula:

Totalinterest .=
RegularPayment *x NumberOfPayments — Principal;

This formula can be inserted at the end of the
Calculate procedure, and the output of this new
information can be inserted at the end of the
PrintAnswer routine using the editor. (Of course,
don’t forget to declare TotalInterest as a REAL
variable!) Before we show you the revised loan
program, here is one more modification, a new
way to output information.

Formatted Printing

Our loan payment program works well enough,
but the output is in Scientific Notation.

Uncle Pascal says: Who wants to
look at dollar amounts that remind
us of a nuclear physicist’s night-
mare!

Fortunately, Pascal has a way to specify how the
output of numerical values will look. Here is the
general format of this new technique called For-
matted Printing:

WRITELN(Variable : field-length : places-after-decimal);

Field-length indicates how many spaces, including
the decimal, you want to reserve on the screen for
the output of your variable. The second number,
places-after-decimal, is optional. It specifies how
many places after the decimal point you want to
be displayed. These two numbers can either be
numbers (e.g., 5, 2, 10), INTEGER variables

WRITEL Q) ress: 12

RST

(e.g., i, Spaces), or expressions which reduce to
an integer value (e.g.,i + 9, Space *x Tab) :

WRITELN(Alimony : 12 : 2); Using numbers

WRITELN(Pi: DecPlaces 4+ 2 : DecPlaces);
Using variables
and expressions
DecPlaces must be
INTEGER
Expression—no
places-after-decimal

WRITELN(Display : Tab -+ 10);

If the variable you are outputting is shorter than
the allowed places for field-length, the extra
spaces (columns) will be filled with spaces to the
left of the number:

Num := 12.113;
WRITELN('The number is —’, Num : 9 : 3);

The output of this statement looks like this:

The number is — 12.113

There are three blank spaces before the number
because nine spaces were reserved for Num and
it only needed six (count the decimal point).

If your number is too large to fit into the space
allowed for field-length, it will be displayed in
Scientific Notation.

In the case of our loan payment program, we
want the final answer to be in dollars and cents,
so we will change the output line in the Print-
Answer procedure to:

WRITELN('Regular payment = $’,Payment : 7 : 2);

This means reserve seven spaces for the variable
Payment: four spaces before the decimal point

Listing 5-7.

(p======= = ¥
(% *)
(% Program Language: PASCAL *3
(% Program Title: Loan Payment - versien 1 %}
(% Subtitle: Quick and dirty first attempt. Has *3
(% crummy E-Notation output. *)
(% %)
(% Author: Mitch Waite %)
(* Program Summary: Calculates the regular payment *)
C* on a loan. *)
(* %)
(#=== - ==+)

PROGRAM Loanl:

VAR Principal, Annual Interest,
ReguiarPayment : REAL:
PaymentsPerYear, TermInYears INTEGER;

PROCEDURE ClearbScreens;

BEGIN
PAGECOUTPUT J:
END; (% ClearScreen %)

PROCEDURE GetData;

BEGIN
ClearScreen;
WRITELNC’ #% LOAN PAYMENT %%);
WRITELN;:
WRITELN;
WRITEC' Enter amount of loan: ' J);
READLN(Principal J;
WRITE(’ Enter the annua!l interest: * J;
READLNC Annual Interast);
WRITE(’ Enter payments per year: ° J;
READLN(PaymentsPerYear)3
WRITE(' Enter term in years: ' J;
READLN(TermInYears);

END; (% GetData %)

66

PROCEDURE Calculate;
VAR Temp, InterestPerPeriod : RERL;
NumberOfPayments : INTEGER;

PROCEDURE Power:
UAR *® : REAL;
y, i : INTEGER;

BEGIN
¥ = InterestPerPeriod + 1; (% Routine which will * 3
y = NumberOfPayments; (% raise x to the y power, %)
Temp = 1.8; (% that is, xTy (x >= B) %3
FOR i := 1 TO y DO (% Answer is in Temp *)

Temp = Temp % x;
END; (% Power %)

BEGIN (* Calculate *%)

InterestPerPeriod := (Annual Interest - 188) / PaymaentsPer¥Year;
MumberOfPayments := PaymentsPerYear #* TermlnYears;

Power;

RegularPayment := Principal % InterestPerPeriod ~ (1 - 1 ~ Templ;

END;: (% Calculate %}

PROCEDURE PrintAnswer;

BEGIN
WRITELN;
WRITELN;
WRITELMNC(’ Regular payment = % ,RegularPayment);
WRITELN;
WRITELN;
END; (% PrintAnswer)

BEGIN (% Main Program %)}

GetData;

Calculate;

PrintAnswer;

WRITELNC' That’ ‘s all folks...BYE' };
END. (% Loanl %)

87

Listing 5-8.

PROGRAM LoanZ;

UAR Principal, Annual Interest,

RegularPayment, TotallInterest REAL;

PaymentsParYear, TermInYears @ INTEGER;:
(% %2
(% z)
i This part of program is the same as before #)
(% : *)
(% g *)

Total Interest := RegularPayment #% NumberOfPayments - Principal;

END: (% Calculate #)

PROCEDURE PrintfAnswer;

BEGIN
WRITELN;
WRITELN;

WMRITELNC’ Regular payment = % ,RegularPayment : 7 :

WRITELN;
WRITELNC Total
WRITELN;
WRITELN;

END; (% PrintAnswer %)

interest on loan =

BEGIN (% Main Program #%)
GetDlata;
Calculate;s
PrintAnswer;
WRITELN(' That’ ‘s all
END. (% LoanZ2 %)

folks...BYE");

(dollars), one for the decimal point, and two
spaces after the decimal point (cents). A nice
feature of formatted printing is that it automati-
cally rounds off the number. This format (7:2)
is set up for the six gignificant digits which is the
most that Apple Pascal (UCSD) can handle. If
your Pascal has more than six significant digits,
just increase the field-length appropriately.

If you want to use formatted printing for IN-
TEGERs or STRINGs, then do not use the second
number for places after the decimal (there is no
decimal in INTEGERs or STRINGs) or you will
get a compiler error. When using formatted print-
ing with INTEGERS, if you don’t reserve enough

4 ,TotalInterest : 7 : 2};

space for the value, that is, if the value is longer
than the field-length, the formatted printing in-
formation will be ignored and the value will be
displayed in full. If you use it with STRINGs, the
STRING will be chopped off to make it fit within
the field-length:

Complaint := 'l am too long’;
WRITELN(Complaint : 8);

This statement will print only the first eight
letters:

I am too

Tabbing With Formatted Printing—Formatted
printing can be used as a makeshift TAB function.
Look at how we are using it to center the title of
the program in the GetData in the following ver-
sion of the Loan Payment program, Loan2. Since
the heading is 18 characters long and the screen
width we are using is 40 characters long, we want
to place 11 blank spaces before the heading and
11 blank spaces after it (11 + 18 + 11 = 40) in
order to center it on the screen. We reserved 29
spaces for the heading. Since the heading is only
18 characters long, the 11 extra spaces we re-
served will be placed in front of the heading—and
there we have it!

Listing 5-8 contains the revised loan payment
program.

Here are two sample runs of the revised pro-
gram using the same data that we used in our
runs of Loanl:

4] ** LOAN PAYMENT **

Enter amount of loan: 4000

Enter the annual interest: 20
Enter payments per year: 12
Enter term in years: 5

Regular payment = $ 105.98

Total interest on loan = $2358.54
That's all folks . . . BYE
(2) ** LOAN PAYMENT **

Enter amount of loan: 80000
Enter the annual interest: 15

Enter payments per year: 12
Enter term in years: 30

Regular payment = $1011.55
Total interest on loan = $284160.
That's all folks . . . BYE

Whew ! That’s a lot of interest!! You’ll notice that
since we are using a version of Pascal that has
only six significant digits, there are no zeroes af-
ter the decimal point in the answer to Total in-
terest on loan in the second run of the program.
This means, of course, that the answer isn’t exact.
Six digits of accuracy might be tolerable for your
own use, but not for a business. The solution is
to use the variable type, LONG INTEGER, which
is covered in Chapter 9. If you are interested in
learning more about the inaccuracies of the loan
formula, see Appendix G.

Quiz

True or False
1. If the initial value in a FOR statement is smaller than
the final value, the program will “bomb out.”

2. The words BEGIN and END are called “delimiters” be-
cause they show the limits of a compound statement.

3. If there is a discrepancy between the results you get from
running the LOAN PAYMENT program and what the
bank says, the bank is probably wrong.

4. If your version of Pascal has six significant digits of ac-
curacy, you can get it to display more than six digits by
using formatted printing.

5. Formatted printing can be used for STRINGs and INTE-
GERs as well as REALs.

chapter 6

Program Control With Decision Making

In this chapter we will continue our introduc-
tion of program control with IF-THEN and IF-
THEN-ELSE. We will be presenting a useful
Metric Conversion Program at the end of this
chapter.

THE IF-THEN DECISION MAKER

Here is another familiar statement for those
who are familiar with BASIC. Pascal’s IF-THEN
is very much like BASIC’s. IF-THEN allows you
to check a condition to see whether it is TRUE
or FALSE and then do something if it is TRUE.
The format of the statement is:

IF condition THEN statement;

What’s a Condition?

A condition can result in a value which is either
TRUE or FALSE. It can’t be maybe, kind of, or
usually. Does something here sound familiar? Yes,
conditions are Boolean values—they all evaluate
to a Boolean quantity, either TRUE or FALSE.
A condition is often a Boolean expression, a com-
parison of two values using the relational op-
erators:

— equals
< less than
> greater than

= less than or equal to

= greater than or equal to
not equal to

Here are some examples of Boolean expressions
that evaluate to a TRUE or FALSE Boolean re-
sult: :

FirstName = 'Louls’

Month <> ’'December’
Choice <= 8

a<b
Days = 30
Denominator > 0.0

70

We will call these expressions “simple” Boolean
expressions because only one comparison is made
in each of them. Again, don’t mix up the use of
the two equal signs (=) above with the assign-
ment symbol (:=). The equal sign means “ex-
actly equivalent to” while the assignment symbol
reads “is replaced by” or “becomes.” Also, it is
important to pay close attention not to mix vari-
able types in a Boolean Expression (i.e., don’t
compare INTEGERs with REALs or STRINGs
with CHARs).

Here are some examples of IF-THEN state-
ments. The statement following the THEN will
only be executed if the condition after IF evalu-
ates as TRUE. If it evaluates as FALSE, the
statement part of the IF-THEN will be skipped
and the next statement in the program will be
executed.

IF Guess < RandomNumber THEN
WRITELN('Your guess was too low!’);

IF Password <> 'KNOCK KNOCK' THEN
WRITELN('No way, Charliel’);

IF DaysinMonth = 28 THEN
Month := 'February’;

Notice our use of equals (=) and assigned (:=)
in the last example.

IF-THEN With Compound Statements

As in the FOR statement, the statement part of
IF-THEN can be a compound statement. For ex-
ample:

IF Response = ‘NO' THEN
BEGIN
WRITELN('Your answer was correct!’);
Score :=— Score + 10;
WRITELN('Your total score is now ’,Score);
END;

LS

CHANGS, TR
DRAGONS

FIEA~COLLAR

RIFX

Boolean Variables as the Condition

Instead of using a Boolean expression as the
condition, you can use a simple Boolean variable:

IF ErrorFlag THEN
WRITELN('There was an error, please try again.’);

The value of ErrorFlag is evaluated in the same
way our simple expressions are evaluated. The
message will be printed only if the value of the
Boolean variable, ErrorFlag, is TRUE. Another
way to write this is:

IF ErrorFlag = TRUE THEN
WRITELN('There was an error, please try again.’);

The outcome of these two examples will be the
same; the first example is actually a shorthand
way of writing the second example.

The important thing to remember
is that the condition in an IF-THEN
must evaluate to either TRUE or
FALSE. Uncle Pascal says: You
might be able to keep dry in the
rain, but when you take a bath you
get wet!

AND, OR, and NOT

These three functions are sometimes called
Boolean operators or logical operators. This is

71

because they operate “logically” on Boolean vari-
ables or expressions.

What follows are the “Truth Tables” for the
logical operators, AND, OR, and NOT (Fig. 6-1).
In these tables, Alpha and Beta are both BOOL-
EAN variables (i.e., TRUE or FALSE). To use
the tables, check to see what the values for Alpha
and Beta are, then what the values will be when
operated on by the logical operator.

As you can see, when Alpha and Beta are op-
erated on by AND, both variables have to be
TRUE for Alpha AND Beta to be TRUE. If either
of the variables is FALSE, then the result will
be FALSE. When OR is the operator, the result
will be TRUE if either variable is TRUE. The re-
sult will be FALSE only if both variables are
FALSE. NOT is different from the other two op-
erators in that it doesn’t make a comparison—
it combines with the variable to give the oppo-
site value of the variable. If Alpha is TRUE, then
NOT Alpha is FALSE. If Alpha is FALSE, then
NOT Alpha is TRUE.

We said that the Boolean Operators can also
be used on Boolean expressions. This can be done
by making the expression look like a single Bool-
ean value. All you have to do is surround the ex-
pression with a pair of parentheses. We will call
this a “complex” Boolean expression since it is

- which horse, should. T buy? The black stallion. QR the Palomino
but NOT the one with F’tﬂhe, bucK teeth, AND for sure NOT the

%\gt&s% to slay dragons, OR maybe that dar horse usith ﬂ;

// /4 //// %
7
122
7
Vi 7

1
Wi N N

///
N
// A 3
Y 3 %
//I/,// é i III/A IJ(/f ~

AND /OR" the little pony.--

"
\

T, T / :
/ /// /, /‘
TNE B
iy

S

i
f'/
\‘/@ b

! 7
TR DTN 40070 . ”
i, 7 // //’ i
e) // 0

7

% 1
7 /,l//’/,/ 117
/”’5'/':)
11010
i

T I
/i/// ///I/ ‘ //%7 Z/l////// //
)

V)14,
At
it il Y
'/,
/

N g
A /
i)

made up of two or more “simple” Boolean expres-
sions operated on by a Boolean operator:

This example will evaluate as TRUE if the string
variable Answer contains either the string ‘YES’
or the string Y’ (if either expression within the

(Answer = 'YES’) OR (Answer = 'Y’) parentheses evaluates as TRUE). Going one step
further:
Alpha Beta Alpha AND Beta
TRUE TRUE TRUE (Answer = 'YES’) OR (Answer = 'Y’) OR (Answer = 'SURE’)
TRUE FALSE FALSE If any of the single expressions within the paren-
FALSE TRUE FALSE theses are TRUE, the entire complex expression
- will be evaluated as TRUE. In fact, your expres-
FALSE FALSE FALSE sion can be made up of as many smaller expres-
sions as you like:
Alpha Beta Alpha OR Beta
- (EXP1) OR (EXP2) OR (EXP3) OR . .. OR (EXPn)
TRUE TRUE TRUE i
The same holds true for AND:
TRUE FALSE TRUE
FALSE TRUE TRUE (EXP1) AND (EXP2) AND (EXP3) AND . . . AND (EXPn)
FALSE FALSE FALSE You must use parentheses to sur-
round each expression in a com-
plex expression. Uncle Pascal says:
Alpha NOT Alpha Placing your potatoes in a sack will
TRUE FALSE make for easier handling.
FALSE TRUE Here 1@ an example of using AND in a complex

Fig. 6-1. Truth tables for AND, OR, and NOT.

72

expression:

(FirstName = ’Seth’) AND (Age = 34)
AND (SocialSecurity = '555-66-7777’)

This entire expression will only be evaluated as
TRUE if ALL of the simple expressions within
the parentheses are TRUE. Notice that even
though this is a single expression, we split it up
into two lines. It is fine to break expressions up
into multiple lines.

Notice also that Age is an integer, whereas all
the other variables are strings. However, we are
not mixing variable types since each expression
within the parentheses is evaluated separately as
TRUE or FALSE. (Bet you thought you caught
us in a contradiction!)

Let’s put this last example into an IF-THEN
statement:

IF (FirstName = ’'Seth’)
AND (Age = 34)
AND (SocialSecurity = '555-66-7777') THEN
WRITELN(’'OK, Seth, you pass. Begin entering data.’);

By surrounding the entire condition section of the
above example with an additional set of paren-
theses, it too can be operated on:

beginning parenthesis

IF NOT ((FirstName = 'Seth’)
AND (Age = 34)
/ending parenthesis
AND (SocialSecurity = '555-66-7777')) THEN
BEGIN
WRITELN(CILLEGAL ENTRY.);
WRITELN(’Someone is tampering with the data.’);
END;

The way the computer figures this one out is by
evaluating the expressions starting with the one
within the innermost set of parentheses and work-
ing its way out, level by level. In this example,
there are three levels to be evaluated:

Level 1—the three expressions surrounded by
the parentheses (e.g., (FirstName —
’Seth’), etc.)

Level 2—the Level 1 expressions connected by
ANDs

Level 3—the Level 2 expression operated on by
NOT

If any of the Level 1 expressions are FALSE, then
the Level 2 expression will also be FALSE., If the
Level 2 expression is FALSE, then the Level 3
expression will be TRUE (the logical operator
NOT operating on the level 2 expression yields
the opposite value). If Level 8 is TRUE, then the
Compound Statement will be executed.

73

Using Parentheses for “Precedence of
Evaluation”

Parentheses are also used to make sure the com-
puter evaluates the expression in the correct or-
der. Let’s say that we have a program that tabu-
lates certain personal information about a certain
group of people. And let’s say we wanted to count
the number of men who had been either married
or had lived with someone (LWS) before. Con-
sider the following two statements:

(A) IF (Sex = 'MALE') AND (Married > 0) OR (LWS > 0)
THEN Counter1 := Counter1 4 1;

(B) IF (Sex = 'MALE’) AND ((Married > 0) OR (LWS > 0))
THEN Counter1 := Counterl 4 1;

These two statements will be evaluated differently
because there is an extra set of parentheses in
(B). What we really want the computer to do is
to check to see if this person is a man, then check
to see whether or not he has ever been married
or lived with someone (if he has, the variables,
Married or LWS, will be greater than zero). If so,
then increment the counter by one.

Let’s say that we were checking a woman who
is married and lived with someone once before.
The computer would evaluate statement (A) in
the following way:

Level 1—Check each simple expression within
the parentheses:

(Sex = 'MALE’') -» FALSE
(Married > 0) - TRUE
(LWS > 0) - TRUE

IF (FALSE) AND (TRUE) OR (TRUE) THEN . ..

Level 2—Carry out the logical operations on
the Level 1 results (use the previous
truth tables) :

IF (FALQAAND (TRUE) OR (TRUE) THEN . ..
FALSE
TRUE

FALSE AND TRUE OR TRUE - TRUE

A FALSE ANDed with a TRUE
yields a FALSE, but when this
FALSE is ORed with a TRUE, the
final result is TRUE.

Since this person is a woman, we want the state-
ment to evaluate as FALSE regardless of the
other data, so statement (A) will yield incorrect
results.

When an extra set of parentheses are added,
as in statement (B), the statement does what we
want it to:

Level 1—Evaluate the Married and LWS vari-
ables:

(Married > 0) - TRUE
(LWS > 0) - TRUE
IF (SEX = 'MALE’) AND ((TRUE) OR (TRUE)) THEN. ..

Level 2—Evaluate the Sex variable. Separately
evaluate the results of Level 1:

(Sex = 'MALE’) » FALSE
IF (FALSE) AND ((TRUE) OR (TRUE)) THEN . ..
TRUE
TRUE OR TRUE - TRUE
Level 3—AND the results of Level 2:
IF (FALSE) AND (TRUE) THEN . . .
FALSE

FALSE AND TRUE - FALSE

Statement (B) works because we are no longer
giving equal importance to all three expressions.

What we have just demonstrated is called prece-

dence of evaluation. First the NOTS, then the
ANDs, and finally the ORs will be evaluated in o
Boolean expression unless parentheses are used
to indicate that a specific section should be eval-
uated first. When parentheses are used, the ex-
pression within the innermost set will be evalu-
ated first.
Take a look at the following example:
IF (Sex = 'MALE’) THEN
IF (Married > 0) OR (LWS > 0) THEN
Counter1 := Countert + 1;

The end result of this statement will be exactly
the same as example (B). However, this example
is probably more efficient simply because the com-
puter doesn’t have to waste its time evaluating the
Married and LWS variables if the first part is
FALSE—it will just drop down to the next state-
ment. In example (B), everything in the state-
ment had to be evaluated before the computer
could make its decision.

74

IF-THEN-ELSE

This statement is actually a variation on IF-
THEN. Its syntax is:

IF condition THEN statement1 ELSE statement2;

It says “if the condition is TRUE, then execute
statementl, otherwise execute statement2 (when
the condition is FALSE).” Either statementl or
statement2 will be executed—never both, never
neither. This gives us an alternative path to fol-
low if the condition is FALSE (the ELSE sec-
tion), whereas the “plain vanilla” IF-THEN “fell
through’” to the next statement when FALSE.

Again, the condition can be anything from a
simple Boolean variable to a complex Boolean ex-
pression, and the statements (1 and 2) can be
compound statements.

Notice that there is only one semicolon in the
entire IF-THEN-ELSE statement and that it’s
located at the very end. Do not place semicolons
after statementl or you will get a compiler error.

How Do We Use IF-THEN-ELSE

Let’s say you were ordering a sandwich and
could choose either wheat bread or rye bread.
Listing 6-1 shows how a program could handle
this situation.

Here are a couple of runs of this program:

(1) What kind of bread do you want on your
sandwich, WHEAT or RYE? WHEAT

One turkey on WHEAT, coming up--

(2) What kind of bread do you want on your
sandwich, WHEAT or RYE? RYE

Catch the Rye Bread, here it comes . . .

Pretty simple! If the person types WHEAT, the
Wheat statement is executed, otherwise the Rye
statement is executed. But, what happens if we
have one of those customers who is picky and
hard to please?

What kind of bread do you want on your
sandwich, WHEAT or RYE? PUMPERNICKEL

Catch the Rye Bread, here it comes . . .

The program can’t handle that response. It as-
sumes that if it isn’t wheat, it’s rye. In Listing 6-2
is a revised version of the program which corrects
the problem.

And a run of the program:

Listing 6-1.

PROGRAM ChooseBreadl;

VAR BreadType : STRING;

BEGIN
WRITELN(What kind
WRITEC’ sandwich,
READLN(BreadType);
WRITELN;

IF BreadType =

of bread

" WHEART® THEN

do you want on your’ J);
WHEAT or RYE? ©)3

WRITELMN(' One turkey on WHEAT, coming up--")

ELSE

MRITELN(' Catch the Rye Bread, here it comes...’);

END. (% ChooseBraadl %)

What kind of bread do you want on your
sandwich, WHEAT or RYE? PUMPERNICKEL

Sorry Bub, we're all out of PUMPERNICKEL

In this program, first the computer tries for a
match with WHEAT. If it fails, it tries for a
match with RYE. If it fails again, the “Sorry Bub
.. .” message is printed out. If there were more
options to check out, we could just add more
ELSEs:

IF condition1 THEN
statement1

ELSE IF condition2 THEN
statement2

ELSE IF condition3 THEN
statement3

ELSE

ELSE
statementN;

/semico/on at very end

Again, notice where in the IF-THEN-ELSE state-
ment the semicolon is placed. There is only one
of them and it is at the very end. Also, notice how
we handled the indentation of this statement. In-
denting it this way makes it easier to follow
the logic.

Shown in Listing 6-3 is a program which uses
compound statements in the IF-THEN-ELSE
statements.

Here are three sample runs of the program
from Listing 6-3:

(1) Hello there good looking!
What's your name? DONALD

Oh, DONALD, it's been years!!!

Listing 6-2.

PROGRAM ChooseBread?Z;

VAR BreadType : STRING;

BEGIN
WRITELNC(What kind of bread
WRITEC(” sandwich,
READLN(BreadType };
WRITELN;

IF BreadType "WHEAT” THEN
WRITELNC’ One turkey on WHERT,
ELSE
IF BreadType

WHEAT or RYE? '3

= ‘RYE’ THEN

£

do you want on your’ };

coming up--")

WRITELNC(’ Catch the Rye Bread, here it comes...’)
ELSE
WRITELNC’ Sorry Bub, we’ ‘re all out of °,BreadTypel:

END. (% ChooseBreadZ %)

75

Listing 6-3.

(f======= == =%
(% *)
(* Program Language: PASCAL *)
(% Program Title: Advances *)
(% Subtitie: How to use IF-THEN-ELSE to get your *3
(% computer to be fresh to you. *)
(% *)
(* AUTHOR: Annie Fox *]
(% Pascal version by David Fox %)
(% *)
(% Program Summary: Accepts data from the keyboard #)
(% to use in making simple decisions. *3
(% *]
(== msssssoosssso=ssssss=ssss=saoons *)

PROGRAM Advances:

UAR Name : STRING;

PROCEDURE ClearScreens

BEGIN
PAGECQUTPUT)5
END; (#% ClearScreen %)

PROCEDURE GetMNume;

BEGIN
WRITELNC(' Hello there good looking!’)3
WRITE(What’ " s your name? ~);
READLN{MName };
ClearScresan;
WRITELN(’ Oh, ' ,Name,’, it’ s been yearsi!i!’);
WRITELN;
END; (% GaetMName %)

78

PROCEDURE GetEyecolor:
VAR Eyecolor : STRING;

BEGIN
WRITELN(' Forgive me for forgetting, but what’);
WRITE(" color are your eyes? ’ 1;

READLMN(Eyecolior J;
ClearScreen:
IF Eyecolor = ’BLUE" THEN
BEGIN
WRITELNC fh, yes, ~ ,Name,’ , they are as blue as’ };
WRITELN{® the summer sky.' J;
END
ELSE
IF Eyecolor = ' BROWN' THEN
BEGIN
WRITELNC AH, * ,NMame,’, they are as lovely as’ };
WRITELNC' brown velvet.’ };
END
ELSE
BEGIN
WRITELM({' Of course, ' ,Mame,’, and very beautiful’);
WRITELN¢(Eyecolor,’ eyas, I might add.’);
END;
WRITELN;
END: (% GaetEyecolor %3

PROCEDURE GetMaritalStatus;
VAR Married : STRING;

BEGIN
WRITELNC' Tell me, my dear ' ,Name,’ ,’)3
WRITE(" are you married? ’ J;

READLN(Married);
ClearScrean:

WRITELN;
WRITELN;
IF Married = "YES® THEN
WRITELNC' I might have known..... SIGH.' 3
ELSE
IF Married = 'NO’ THEN
WRITELNC' OH HAPPY DAY!ift1t117]
ELSE
BEGIN
WRITELN(’ If you can’’t make up your mind now, then’ J;
WRITELNC' I’ Il check back with you in S MINUTES!’);
END;

END; (% GetMaritalStatus %)

77

BEGIN (% Main Program #)
ClearScreans
GetMName;
GetEyecolor;
GetMaritalStatus;

END. (% Advances *)

Forgive me for forgetting, but what
color are your eyes? BLUE

Ah, yes, DONALD, they are as blue as
the summer sky.

Tell me, my dear DONALD,
are you married? YES

| might have known..... SIGH.

(2) Hello there good looking!

What's your name? HOPE

Oh, HOPE, it's been years!!!

Forgive me for forgetting, but what
color are your eyes? BROWN

Ah, HOPE, they are as lovely as
brown velvet.

Tell me, my dear HOPE,
are you married? NO

(8) Hello there good looking!

What's your name? ELIZABETH

Oh, ELIZABETH, it's been years!!!

Forgive me for forgetting, but what
color are your eyes? VIOLET

Of course, ELIZABETH, and very beautiful
VIOLET eyes, | might add.

Tell me, my dear ELIZABETH,
are you married? SOMETIMES

If you can’'t make up your mind now, then
I'l check back with you in § MINUTES.

The first two procedures are already familiar
to you. In the procedures, GetEyeColor and Get-
MaritalStatus, we see a variation on the Choose-
Bread2 program. The main difference is that com-
pound statements are used throughout. Once
again, notice how semicolons are used in the IF-
THEN-ELSE statement. The compound state-

78

ments have semicolons at the end of each state-
ment (as always), but the delimiter, END, in
these compound statements doesn’t have semi-
colons following it—except for the last END in
the statement, and its semicolon is really the
semicolon that belongs at the very end of an IF-
THEN-ELSE statement.

The variable Name is the only one which has
to be global since it is used in more than one pro-
cedure. The other two variables are local since
they are only used locally.

Take a look at this next statement and figure
out how the computer will interpret it:

IF Reply = 'Y’ THEN IF Sum = 0 THEN Sum := Sum 41
ELSE Sum := 0;

Does the ELSE belong to the first IF-THEN or
the second IF-THEN? We didn’t properly indent
this statement to make the problem more obvious.
Here are two possible ways of indenting this state-
ment. Although both will execute exactly the same,
only one of them clearly shows the correct logic
flow:

(A) IF Reply = 'Y’ THEN
IF Sum = 0 THEN
Sum = Sum -1

ELSE Sum = 0;

(B) IF Reply = 'Y’ THEN
IF Sum =0 THEN
Sum = Sum 4 1
ELSE Sum := 0;

The indentation in the second example (B) illus-
trates the logic flow more accurately. Just remem-
ber that ELSE always goes with the most recent
IF-THEN.

Indent your programs to illustrate
the logic flow. Uncle Pascal says:
He who pens his treasure map with
closed eyes will find his way back
to naught!

METRIC CONVERSION PROGRAM

We will now introduce a practical application
of IF-THEN-ELSE. We have all heard of the in-
tended adoption of the Metric System of Measure-
ment by the world at large. Many manufacturers
of prepared food are printing both the English
(the system we grew up with) and metric quanti-
ties on their products. Although this transition

may seem to be difficult, there are many advan-
tages to the metric system, which is always based
upon the number 10. The measurements in the
English system are not based on a number system
but on tradition. Why are there 12 inches to a foot
or 3 feet to a yard or 5,280 feet to a mile? We can
guarantee that a group of scientists did not sit
down together and create the English system as
an experiment in logical thinking ! The task of con-
verting a length from yards to miles requires that
two conversion factors be used. First, we must
convert the length to feet, and then from feet to
miles. The metric system, based on ten, allows
very simple conversion of lengths either measured
in centimeters, meters, or kilometers. All we need
to do is to multiply or divide by a power of ten
(10, 100, 1000, etc.) to perform the conversion.
This then requires only that the decimal point be
moved either to the right for multiplication, or
to the left for division. For example, let us con-
vert 500 meters to kilometers. First of all, we need
to know the fact that 1 kilometer is equal to 1,000
meters. This is conveniently indicated by the pre-
fix “kilo” meaning thousand. Therefore, to con-
vert meters to kilometers, we simply divide by
1,000, or move the decimal point three places to
the left. So, 500 meters is equal to .500 kilometer,
or exactly half a kilometer.

During the worldwide struggle to convert from
the English system to the metric system, the ma-
jor problem is that the new units don’t seem to
have the inherent “sense” that the old ones did.
How long is half a kilometer? Being conditioned
to the old concepts of feet, yards, and miles, we
find it hard to conceive of half a kilometer. But
this is only due to our being unfamiliar with the
metric terms. The children who are being brought
up on metric would think that the English system
didn’t have any “inherent sense.” With a little
practice, we can easily adapt to the metric system.
In the meantime, we can use Pascal to write a
simple program that converts the English mea-
surements which we are now using to metric mea-
surements (Listing 6-4).

There are essentially three main parts to this
program: the section which displays the menu
(MenuDisplay), the section which accepts your
selection (Selection), and the section which does
the actual conversions (actually three procedures,
InchesToCentimeters, PoundsToKilograms,
QuartsToLiters).

Creating Constants

First, take a look at the beginning of the three
procedures, InchesToCentimeters, PoundsToKilo-

grams, and QuartsToLiters. You'll see a new key-
word there called CONST. The CONSTant dec-
laration does two jobs at once—it declares a
constant name (which will be used in the block in
which it is declared) and then assigns this con-
stant a “permanent” value. A CONSTant will re-
tain its value for the life of the program—its
value cannot be changed once it is assigned. The
constant declarations are always located after the
block name and before the VARiables are declared
(if you have any variables). This means they can
be global for the entire program or local, just as
variables can be. Constants can be used wherever
variables or values are used. There are some defi-
nite advantages to using constants:

1. It improves program legibility to see a name
throughout the program (using Pi is clearer
than using 3.14159).

2. If you want to change the value of a con-
stant, it is much easier to make one edit at
the beginning of the program (or block)
than to search through the whole program
to change a number each time that it occurs.

3. You know exactly where to look if you want
to find out what the value of the constant is
(at the beginning of the block).

Here is the format for constants:

CONST Namel = value;
Name2 = value;

NameN = value;

Note that we use an equal sign here rather than
the assigned symbol (:=). This is because we
really are making the constant equal to its value.
From the point of declaration on, the constant s
the value—we just changed its name. The value
can be an INTEGER, a REAL, a CHAR, a
STRING, or BOOLEAN.

When should you use constants? Whenever any
of the following conditions are met:

1. The clarity of a program needs to be im-
proved.

2. The value will be used frequently in the pro-
gram.

3. You plan to edit your program to change the
value at a future date.

4. The value will remain “constant” throughout
the program.

In our metric conversion program, we used con-
stants to improve the clarity of the program.

Listing 6-4.

(% eSS = =%}
(% %3
{(*# Program Language: Pascal *)
(% Program Title: Metric Conversion Program #1 *
(# Subtitle: Program to convert from English to *)
(% Metric units. %)
(% %)
(% Author: Mitch baite ~ David Fox *)
(% Program Summary: Demonstrates the use of a menu %)
(% using IF-THEN, introduces CONSTants *)
(% *)
(k====== = == %}

PROGRAM MetricConuvaersionl;

PROCEDURE ClearScrean;

BEGIN
PAGE(QUTPUT 33
END; (% ClearScreen %)

PROCEDURE Continue;
VAR Cont : STRING:

BEGIM
GOTOXY(E,227;
WRITEC Press "RETURN® to continue: ' J;
READLN(Cont J;
ClearScreens;
EMD; (% Continug %)

PROCEDURE InchasToCentimaters:
CONST CentConst = 2.54; (# CONSTants come bhofore UARiables *%)
UAR Inches, Centimeters @ REAL;

BEGINM
ClearScreen;
GOTOXY(S9,2);
WRITELNC® INCHES TO CENTIMETERS J:
GOTOXY(B,51);
WRITE(' Entar length in inches: *);
READLNC Inches J:
Centimeters := CaentConst % Inches:
WRITELN;
WRITELN(Inches:7:3," inches is equal to’);
WRITELN(Centimeters:7:3," centimeters.’ };
Continue;

END; (% InchesToCentimeters #)

80

PROCEDURE PoundsToKilograms;
CONST KiloConst = B.4536;
VAR Pounds, Kilograms : REAL;

BEGIN
ClearScreen;
GOTOXY(18,2);:
WRITELNC POUNDS TO KILOGRAMS);
GOTOXY(B8,5);
WRITE(Enter weight in pounds: ~ J;
READLN(Pounds);
Kilograms := KiloConst % Pounds;
WRITELN;
WRITELN({Pounds:7:3,’ pounds is equal to’ };
WRITELN(Kilograms:7:3,’ kilograms.’);
Continuaj;

END; (% PoundsToKilograms %)

PROCEDURE GQuartsTobLiters:
CONST LiterConst = B.9463;
YRR GQuarts, Liters : REAL:

BEGIN
ClearScrean;
GOTOKY(12,23;
WRITELN{’ QUARTS TO LITERS' j:
GOTOXY(8,5);
WRITE(Enter volume in gquarts: ’)3
READLN(Quarts);
Liters = LiterConst % Quarts;
WRITELN;:
WRITELN(Quarts:7:3," quarts is equal to’)3
WRITELMN(Liters:7:3," {iters.’)
Continue;

END; (% QuartsToliters *%)

PROCEDURE MenuDisplay;

BEGIN
ClearScresan;
GOTOXY(5,21}:
WRITELN{" # METRIC CONUERSION PROGRAM #');
GOTOXY(8,B6);
WRITELNC(' 1 - Inches to Caentimeters’);
WRITELMN(' 2 - Pounds to Kilograms’);
WRITELMNC'3 - Quarts to Liters’);
WRITELN;
WRITELNC' B - To END the program’ };
END; (% MenuDispiay %)

81

FPROQCEDURE Seiection;
VAR Saiaect : CHAR;

BEGIN
GOTOXY(B,1213;
WRITEC Enter your selection:
READ(Select);

E

b

IF Select = '1" THEM InchesTeCentimeters
ELSE IF Select = '2° THEN PoundsToKilograms
ELSE IF Select = ‘3 THEN QuartsTolLiters;

END; {# Splection %)

BEGIN (% Main Program #)
MenuDisplays
Seiaection;

ClearScreen:

GOTOXY(13,7);

WRITELN(® Bye for now...’ J;
END. (% MetricConversionl %)

2

82

How the Program Works
First, let’s look at a sample run of the program:

* METRIC CONVERSION PROGRAM *

1 - Inches to Centimeters
2 - Pounds to Kilograms
3 - Quarts to Liters

0 - To END the program

Enter your selection: 2

POUNDS TO KILOGRAMS

Enter weight in pounds: 126

126.000 pounds is equal to
57.154 kilograms.

Press “RETURN” to continue: [}

Bye for now . . .

The first procedure called by the program is the
MenuDisplay procedure. It clears the screen and
displays a menu of choices, much like a restaurant
menu does.

The next procedure is the Selection procedure.
This procedure is the “waitress” of the program.
It “takes your order” and sends it on to the “chef.”
This waitress is a little rude, however. If you don’t
make a proper selection on the menu, she turns
her back and walks away (the program ends).
Actually, she could be much worse. If the variable
Select were an INTEGER variable and you en-
tered a letter, she would probably dump a glass

83

of water in your lap (the program would bomb)
before she walked away. She s efficient enough to
accept your request without your having to type
in the entire name. And you don’t even have to
press RETURN. Typing the appropriate number
is all that is necessary (remember READ and
CHAR variables?). We'll provide a waitress with
more class in the REPEAT-UNTIL section of the
next chapter.

Once you make your choice, the waitress will
call out your order to the chef (call the appropri-
ate conversion procedure). This is a very special
chef—he not only comes to your table and asks
for your ingredients before he makes the dish
(accepts the value to be converted), but he de-
livers your meal to you (prints out the answer) !
You’ll notice that the only differences between the
three conversion procedures are:

1. The title printed at the top of the screen.
2. The constants which are used.
3. The prompts asking you for your input.

The structure of each is identical. After the screen
is cleared and the heading is centered near the top,
you are prompted to enter the value to be con-
verted. This value is then multiplied by the con-
version constant. The result is displayed on the
screen. Note the formatting of the REAL vari-
ables in the WRITELN statements. Finally, the
procedure Continue is called. It waits for you to
press RETURN, then clears the screen. The “wait-
ress” then comes back and says good-bye.

To add additional conversion choices is fairly
simple; just update the menu display and selec-
tion procedures with the new choice, and add a
new procedure to do the conversion.

Quiz

True or False

1. There are three possible values the condition in the IF-
THEN statement can take—TRUE, FALSE, and SOME-
TIMES.

2. A condition can be a single variable or a complex Boolean
expression.

3. When a condition is made up of a series of Boolean ex-
pressions, Pascal will evaluate them in the order they
are written.

4. There is no way to change the order in which Pascal eval-
uates a complex Boolean expression.

5. The only way to tell which IF-THEN a certain ELSE
is referring to is by looking at the way the statement is
indented.

chapter 2

Further Control

The three statements that we will introduce in
this chapter, WHILE, REPEAT-UNTIL, and
CASE, have no exact equivalents in most BA-
SICs. Having these statements makes Pascal
more flexible when working with program con-
trol. First, we will cover two statements which
allow you to use Boolean expressions to control
the repetition of a series of statements.

THE WHILE STATEMENT

Using WHILE in your program will allow you
to have a statement (or series of statements) re-
peat while a certain condition is TRUE. The syn-
tax is:

WHILE condition DO
statement;

The condition is a Boolean value and can be a
Boolean variable or a Boolean expression. All the
rules for conditions which we described in the
IF-THEN section of Chapter 6 are valid here. Of
course, the statement can be a compound state-
ment.

Listing 7-1 shows a program in which WHILE
is used to make the computer count from 1 to 100.
Unfortunately, if you try to execute this program,
you will have to trust your computer to count all
the way to 100 by itself—nothing will appear on
your screen except the message ‘Done . . ." be-
cause the variable, Count, is never printed out.
In Listing 7-2 is the same program but with a com-
pound statement. This program will, of course,
print out the numbers from 1 to 100 so you can
keep your computer honest. We won’t show you
how this program looks on execution—you may
try it out for yourself.

WHILE Explained

Here are the steps the computer went through
when in WhileDemo2:

1. Count is initially set to 1.

2. The WHILE statement checks the current
value of Count. If the condition is TRUE
(Count is less than or equal to (<=) 100),
then the compound statement is executed
once. If the condition is FALSE (Count is
greater than 100), then the program falls
through to the next statement (the ‘Done
... message gets printed out).

3. During the execution of the compound state-
ment, the value of Count is written to the
screen and then Count is incremented by 1.

4. Back to Step 2 to check the condition again.

There is a major difference between the WHILE
and the FOR statements. In the FOR statement,
the control value, initial value, and final value
must not be changed by the statement section. In
the WHILE statement, the value(s) in the condi-
tion section must be modified in the statement sec-
tion. Consider the following program fragment:

READLN(Number);
WHILE (Number > 0) AND (Number < 10) DO
BEGIN
Sum:= Sum - §5;
WRITELN(Sum);
END;

If Number isn’t between 0 and 10, the compound
statement will not be executed because the condi-
tion is FALSE. However, let’s say the user enters
the number 7. Now the condition is TRUE and the
compound statement will be executed. But since

the value of Number is not affected by the com-
pound statement, the condition will remain TRUE
and the compound statement will execute forever
or until the electric company turns off your power
or you reset your computer, whichever comes first.
This is called an “endless loop” for obvious rea-
sons.

Here is another example:

READLN(HalfStep);
WHILE HalfStep > 0.0 DO

Listing 7-1.
PROGRAM WhileDamol;

VAR Count : INTEGER;
BEGIN
Count := 1;

HWHILE Count <= 188 DO
Count = Count + 1;

WRITELNC' Done...” J;
END. (# WhileDemol %)

2 @\\@W

;//‘J\i\ill\“

< ,// //"/H ,/”

=2y (' | /

iy, ”H r”;/i’l
((l’

//\

l‘ ///// /f“';l"'

{ /;'
<l //W(19/:; %

BEGIN
HalfStep := HalfStep + 0.5;
WRITELN(HalfStep:7:1);
END;

In this case, the value of the variable in the condi-
tion, the REAL variable HalfStep, is changed in
the compound statement. But, HalfStep has to be

Listing 7-2.
PROGRAM WhileDemo2;

VAR Count INTEGER;
BEGIN
Count := 1;
WHILE Count <= 188 DO
BEGIN
WRITELN(Count J;
Count := Count + 1;

END; (% WHILE %)

WRITELNC Done...” J;
END. (% WhileDemnZ %)

greater than zero for the compound statement to
execute, and continuously adding 0.5 to HalfStep
(which is what the compound statement does)
will never make it into a negative number. So, if
the condition ever evaluates as TRUE, we fall into
another endless loop! Changing the value of the
variable isn’t enough. You must make sure that
the condition will eventually evaluate as FALSE'!
It is important, therefore, to mentally run through
the logic of your WHILE statements to see if it
really does what you want it to, and to check for
possible endless loops.

Check the logic of your WHILE
statements for possible endless
loops or you may run into “recur-
ring” problems. Uncle Pascal says:
If the dog always knocks over the
garbage can, then don’t put him out
with the garbage!

REPEAT-UNTIL—LOOKING AT IT FROM
THE OTHER DIRECTION

This statement is very similar to the WHILE
statement. It tells the computer to REPEAT a

number of statements UNTIL a specific condition
is TRUE. Here are the two major differences be-
tween WHILE and REPEAT-UNTIL:

WHILE
Check to see if condi-
tion is TRUE before
the statement section
is executed.

REPEAT-UNTIL
Check to see if condi-
tion is TRUE after
the statement section
is executed.

Repeat until the con-
dition is TRUE.

Repeat while the con-
dition is TRUE.

This means that a REPEAT-UNTIL statement
will always cycle through the loop at least once
since the condition isn’t checked until the end of
the cycle. A WHILE statement may not cycle
through at all.

Here is a format of the REPEAT-UNTIL state-
ment:

REPEAT statement-1;statement-2; . . .
statement-n;UNTIL condition;

Or, more clearly, with indentation:

!

R
' U

s 3

’f’l/ oA .

T 70
1 /”/?I/IJ /(, {

/
JAs 1y (S
’;///fl) \
R A PPN
, A
) NN “p\‘
[FEHNYS
/
V”?//

1,000 15/

AR
{

,/

/ '”I"
)

/’I 'l///’ \I///
/' g %)
' W B
3D =~

S Nzees

5 ‘\Q,"«"‘V’t 9”.’%‘\\ 3"
-

fa]| NS
aufiee e
HESSHE s
..i:-_:: -‘V_A s == \

!
i

7
)

RQPG HT Working In Fleld;
QTIL(Sun 6095 Q)oum;

REPEAT
statement-1;
statement-2;

statement-n;
UNTIL condition;

You'll notice that the REPEAT-UNTIL statement
allows for multiple statements without having to
use the BEGIN ... END format of the compound
statement. This is because the words REPEAT
and UNTIL bracket the statements and leave no
room for doubt as to what is to be repeated. If
you use BEGIN and END within a REPEAT-
UNTIL statement, you will not get an error:

REPEAT
BEGIN

END
UNTIL condition;

but doing so would be redundant.

Listing 7-83 presents a version of the While-
Demo-2 (Listing 7-2) program to count from 1
to 100 using REPEAT-UNTIL.

Listing 7-3.
PROGRAM RepeatUntil Demo;

VAR Count INTEGER;
BEGIN
Count := 1};

REPEART
WRITELN(Count);
Count := Count + 1;

UNTIL Count > 180;

WRITELNC Done...” J;
END. (#* RepeatUntilDemo #)

And here are the steps the computer goes through
in this program:

Initialize Count to 1.

Output the value of Count to the screen.
Increment Count by 1.

Check to see if the condition in the UNTIL
line is TRUE (Count > 100). If so, then fall
through and execute the next statement
(WRITELN(CDone...’);), otherwise, go back
to Step 2).

SRS

As with the WHILE statement, you must watch
out for the endless loop which will occur if the
condition can’t become TRUE.

REVISING THE METRIC PROGRAM

Do you remember our impertinent waitress
from the last chapter? We will now replace her
with a polite, efficient waitress who can’t be fooled.
In Listing 7-4 is the revised portion of the Metric
Conversion Program. Refer to Listing 6-4 to see
the original version.

First, we added a CONSTant called Conver-
sions at the top of the program. This global con-
stant is set to the number of different conversions
our program will currently do. Also notice that
this constant is not a number but a CHARacter.
This is so we can compare it with the character
(stored in Select) which the user will enter in
the Selection procedure. We moved Select from
a local variable within Selection to a global vari-
able because it will be accessed in the main pro-
gram section—we want to extend the ‘“domain”
in which this variable is defined.

Now look at the Selection procedure. We added
a BOOLEAN variable, ErrorClear, to let us know
if the input was free of errors. Let’s follow this
procedure’s logic:

1. Position the cursor at the beginning of the
13th line.

2. Begin the REPEAT-UNTIL loop.

3. Print the prompt line and accept a single
character input using READ.

4. Check to see whether the character entered
is outside the acceptable range.

a. If it is then reposition the cursor at the
beginning of the 13th line, print ‘Try
again. ’, and set ErrorClear to FALSE.

b. Otherwise, set ErrorClear to TRUE—
the character entered is a legal response
and we are “clear of errors.”

5. Next comes the condition checking part of
the REPEAT-UNTIL statement.

a. If the user didn’t press a correct letter,
the ErrorClear variable will have been
set to FALSE and the prompt will be
repeated (back to Step 3).

b. Otherwise, ErrorClear will be TRUE,
the REPEAT-UNTIL loop will be ter-
minated, and the following IF-THEN-
ELSE statement will be executed.

This Selection procedure is the first of many ex-
amples we will be giving you which illustrate

PROGRAM Metr icConversionZ;

Cco

uR

(%
(%
(%
(%
(%

NST Conversions = '3 ;
R Saelect : CHAR:;
This part of program

PROCEDURE Selection:

UR

BE

R ErrorClear : BOOLEAN;

GIN
GOTOXY(8, 1233
REPEAT

Listing 7-4.

(% Number of different conversions

this program wili

is the same as before

WRITEC(’ Your selection, please: * J);

READ(Select);

IF (Select ¢ "B) OR (Select > Conversion) THEN

BEGIN
GOTOXY(B, 123;
WRITEC' Try again. ° J;
ErrorClear := FALSE;
END

ELSE ErrorClaar := TRUE;
UNTIL ErrorClear;

IF Select = *1° THEN InchesToCentimeters
ELSE IF Select = *2° THEN PoundsToKilograms
ELSE IF Select = ‘3" THEN QuartsTolLiters;

END; (% Selection %)

BE

GIN (% Main Program *%)
REPEAT
MenuDisplay:
Selection;
UNTIL Seiect = "8 ;

ClearScreen;
GOTOXY(13,7);
WRITELN{ Bye for now...’' };

END. (% MetricConversionZ %)

(*% Error Checking routine -
(% any key may be pressed here;
(% the program won’t go on until

(% there is a

(% Loop until

89

legal input.

a B is pressed.

currentiy do.

*)
*)
¥*)
%)
%3

E D]

*)

%)
*}
*3
*)

user-oriented, errorproof entry of data. This pro-
cedure has a number of important features:

1. It allows the user to press one key for the
input. No RETURN is needed.

2. The program will not proceed until a looked-
for response is entered (error checking).

3. It has cursor control to avoid having the
screen fill up with the same error message.

4. It doesn’t invalidate the user for experiment-
ing with unasked for answers. It corrects the
user with a polite error message (not ‘HEY
DUMMY, YOU BLEW IT?")

5. It presents the computer in a very person-
able, friendly way.

We think computers have had enough bad PR al-
ready and plan to do whatever we can to improve
their manners.

We also added a REPEAT-UNTIL loop in the
main program section. The program will now con-
tinue to ask you for conversions until you press ‘0’
in the Selection procedure.

Unfortunately, the entire program is still not
bombproof. Our chef (the conversion procedures)
will throw his knife at you if you enter anything
but a number, and he will not allow you to change
your mind (back-space) during entry. We plan to
remedy this by hiring a new cook in Chapter 9
who can show your programs how to accept all
numeric inputs as STRINGs, check them for cor-
rectness, and then convert these STRINGs to
numbers.

GOTO WHERE?

By now, you are probably wondering if there is
an unconditional branching statement like BA-
SIC’s “GOTO linenumber” statement. Yes, there
is, but we aren’t going to cover it in this book.
The GOTO statement is one of structured pro-
gramming’s worst potential enemies. It is all too
easy to obscure a program’s logic flow by adding
a bunch of GOTOs. You will soon discover that
in almost all cases, you can write your programs
using the flow of control statements we have just
introduced to you and not even need GOTO. But
be prepared for the infamous symptoms of “GOTO
withdrawal” (e.g., the thoughts: “BASIC is so
much easier,” “Who cares about structured pro-
gramming anyway?,” or “N. Wirth, GOTO __"").
This dreaded disease can be alleviated with two
aspirins and a little extra thought applied towards
your program,

90

CASE: AN EASIER WAY TO
MAKE MULTIPLE CHOICES

For those of you who think that using a long IF-
THEN-ELSE-IF-THEN-ELSE-1F-THEN-ELSE
.. statement (like the one in the Metric Conver-
sion program, Listings 6-4 and 7-4) is rather un-
wieldy, we have a present for you. It is the CASE
statement. CASE is used when you want to exe-
cute one statement out of a list of statements, in
some ways similar to BASIC’s ON X GOSUB 100,
200, 300. Let’s explain CASE through an example.
Look at the program in Listing 7-5.

Here is a run of this program:

What is the weather today?

Hot
Cold
Rainy
Smoggy
Blizzard

Press a letter: R

Wear your cloak.

As you can see, pressing the first letter of one of
the words on the menu will result in the computer
printing out the appropriate ‘“dressing instruc-
tions.” An equivalent IF-THEN-ELSE statement
would be:

IF Weather = 'H’ THEN
WRITELN('Wear your shorts.’)
ELSE IF Weather = 'C’ THEN
WRITELN('Wear your fur coat.’)
ELSE IF Weather == 'R’ THEN
WRITELN('Wear your cloak.’)
ELSE IF Weather — 'S’ THEN
WRITELN('Wear your gas mask.’)
ELSE {F Weather = B’ THEN
WRITELN('STAY HOME!!);

Most people would much rather play with CASE
than mess around with the mess above! Using
the CASE statement makes the logic much easier
to follow.

In our example program, the variable Weather
is called the case-index and the characters ‘H,” ‘C,
‘R,” ‘S,” and ‘B’ are called the case-constants. When
the CASE statement is executed, Pascal looks for
a case-constant which has the same value as the
case-index and executes the statement to the right
of the matched case-constant.

The general format for CASE is:

u
CHSE Ve, 1

é

Rszon |

CASE case-index OF

case-constant : statement;
case-constant : statement;
case-constant : statement;

END;

where the case-index can either be an ordinal vari-
able (CHAR, INTEGER, or BOOLEAN), or an
expression which reduces to an ordinal variable
(e.g., i + 5)—it can’t be a STRING or a REAL.
As we said, the case-constants are the possible
values that the case-index can have. These values
can be declared CONSTants but they can’t be
variables. There can be no duplication of values
among the case-constants. Of course, the state-
ment to the right of a case-constant can be a
compound statement.

An END With No Beginning? Notice that the
CASE statement is terminated with an END.
This is one of the only places in Pascal where an
END is used without a matching BEGIN. This
means that you will not have an equal number of
BEGINs and ENDs in your program if you are

91

using CASE statements. You may need to remem-
ber this while you are debugging your programs
and trying to match the number of BEGINS to the
number of ENDs.

Protection Against Crashed CASEs

In UCSD Pascal, if the value of the case-index
doesn’t appear in any of the case-constants, the
statement following the CASE statement will be
executed. However, this condition is ‘“‘undefined”
in standard Pascal. In many versions of Pascal
this occurrence will result in a run-time error, a
crashed program, or Uncle Pascal knows what!
Therefore, it is usually a good idea to make sure
that the case-index will always be one of the ex-
pected values if you want your program to be
transportable to other versions of Pascal.

You’ll notice that the program CaseDemol is
not crashproof for versions of Pascal which re-
quire a match of the case-index and the case-
constant. For example, if the user pressed a ‘Z,
the program could bomb. Here are a few of the
ways this problem can be corrected:

Listing 7-5.

PROGRAM Caseﬂemoli

UAR Weather : CHAR;

BEGIHN
PAGE(QUTPUT); (% Clear the screan %)
WRITELNC’ What is the weather today? ’ J;
WRITELN;

WMRITELNC' Hot’):
WRITELNC(® Cold’);
WRITELNC' Rainy’ J;
WRITELN({’ Smoggy’);
WRITELN(® Blizzard' 1;
WRITELN;

WRITE(Press a letter: ' J;
READ(Weaathar };
GOTOXY(5,15);

CASE Weather OF

"H : WRITELNC® Wear your shorts.”);
“C : WRITELNC Wear your fur coat.’ J;
"R WRITELNC Wear your cloak.”)3
'St WRITELN(' Wear your gas mask!’);

"B : WRITELNC’ STAY HOME!!’ J;
END; (% CASE %1}

END. (% CaseDempol %)

Listing 7-6.
PROGRAM CaseDemol;
VAR n : INTEGER;
BEGIN
REPEAT
WRITELN;
WRITELNC(’ Enter an integer between 1 and 9 J;
WRITEC” (@ to quit): 7);
READLN(n);
IF (n < 8) OR (n > 9) THEN n == 18; (% Make sure n is ualid
CASE n OF
1,3,5,7,8 : WRITELN(® That was an odd number.’);
2,4,6,8 : WRITELNC That was an even number.’);
18 : WRITELNC’ That number was out of range.’);
8 : 3 (% Empty statement #)
END; (% CASE *)

UNTIL n = 8;

WRITELNC BYE...);
END. (% CaseDlamoZ %)

92

%)

1. Use the REPEAT-UNTIL solution we of-
fered in the last section to repeatedly ask
the question until a proper response to it is
given.

2. Use an IF-THEN statement to check the val-
ues of the case-index—if the value is legal
then execute the CASE statement:

IF (Digit > 0) AND (Digit < 9) THEN
CASE Digit OF

END;

This CASE statement will only execute if
Digit is from 1 to 8.

3. Check the values with an IF-THEN. If they
don’t match any of the case-constanfs then
set the case-index to a preset error value
which s one of the case-constants (see Case-
Demo2, Listing 7-6).

4. Have very complete lists of case-constants!

Listing 7-6 shows an example using method three.
Here is a run of this program:

Enter an integer between 1 and 9
(0 to quit): 3
That was an odd number.

Enter an integer between 1 and 9
(0 to quit): 8
That was an even number.

Enter an integer between 1 and 9

(0 to quit): —1233 n is set to 10

That number was out of range.

Enter an integer between 1 and 9

(0 to quit): 9_
BYE . . .

The first thing you’ll probably notice about this
program is that there is more than one case-con-
stant on each line (separated by commas). These
are called case-constant-lists or ccls for short. If
the case-index matches any constant in a ccl, the
statement to the right is executed. The IF-THEN
before the CASE statement will check if the num-
ber entered (n) is outside the requested range
(between 1 and 9). If it is, n is set to 10. Then we
include 10 as one of the case-constants followed by
an error message. There is an answer for any
INTEGER which can be entered. Notice the use
of an “empty statement” to the right of the case-
constant 0.

CASE AND BOOLEANs

Here is a program which uses a BOOLEAN
case-index and case-constants. It also introduces
another built-in routine which tells you whether
an INTEGER is odd or not. Here is the format
of the routine:

b := ODD(n)

where b is a BOOLEAN variable, and n is an
INTEGER. This routine will return the Boolean

Listing 7-7.

PROGRAM CaseDlDemo3;
VAR n : INTEGER;:
Booc : BGOLEAN;

BEGIN
REPERT
WRITELN;
WRITE(' Enter an integer (B to gquitl): *);
READLN(n)3
Boo := ODD(n3J; (% Function will return a TRUE if
n is odd, otherwise a FALSE *

CASE Boo OF
TRUE

END; (% CASE %)
UNTIL n = 8;

WRITELNC(S50 long...” 73
END. (% CaseDemo3 %)

WRITELNC' That was an odd number.’ };
FALSE : WRITELN(’ That was an evan number.’

L

value TRUE if n is an odd number. Otherwise, it
returns a FALSE. Of course, since there are only
two possible values for a BOOLEAN variable, we
have all the bases covered in the program shown
in Listing 7-7.

And a run of this program:

Enter an integer (0 to quit): 325
That was an odd number.

Enter an integer (0 to quit): —2146
That was an even number.

Enter an integer (0 to quit): 9
That was an even number.
So long . . .

THE METRIC CONVERSION PROGRAM
ONCE AGAIN

Finally, in Listing 7-8 is shown another modifi-
cation of the Metric Conversion program from
Chapter 6 (Listings 6-4 and 7-4). We rewrote the
IF-THEN-ELSE portion of the Selection proce-
dure to make use of the CASE statement.

The output of this procedure will look exactly
the same as it was before we added CASE. How-
ever, it is easier to follow now, especially if you
add more conversion choices to the program. In
addition to increased clarity, the CASE statement
will execute faster (in most cases) than multiple
IF-THEN-ELSE statements.

Quiz

True or False
1. A WHILE loop will always cycle through at least once.

2. You must always make sure that the value of WHILE’s
condition section changes to FALSE during execution of
the loop.

3. A REPEAT-UNTIL loop will always cycle through at
least once.

4. It is necessary to use a BEGIN and an END within a
REPEAT-UNTIL loop.

5. The case-index of a CASE statement can be a STRING.
6. The case-index and the ccls must be of the same type.

7. It is necessary to make sure there is a match between
the case-index and one constant in the ccls.

Listing 7-8.

CASE Select OF

*1” : InchesToCentimeters;

*2" : PoundsToKilograms;

*3 : QuartsTolLiters;

‘B (% Dummy value to exit %);
END; (% CASE *)

94

chapter 8

Procedures (The Second Time
Around) and Functions

In this chapter, we will take a second look at
PROCEDURESs and see how to make them even
more useful. We will also look at some of Pascal’s
“intrinsic functions” (functions that are already
built into the language) and how to write our own
functions.

PROCEDURES ONCE AGAIN . ..

So far, we have only shown one way in which
to allow different procedures to “talk” to each
other—that is, to pass data to each other. This is
by making use of global variables. If a variable is
global to two different procedures, both proce-
dures can access the variable, receive the data
from the variable, and even change the value of
the variable. However, as we said, there is one
major problem with using global variables as
the communication channels between procedures
—+the old “modify-a-program-and-get-a-remote-
bug” problem. It is all too easy to alter the value
of a global variable in such a way as to cause
unpredictable results elsewhere in the program
—if our global variable has an undelivered mes-
sage from procedure Beta to procedure Alpha and,
in the meantime, procedure Delta makes a change
in the variable’s value (not knowing it was
“busy”), procedure Alpha would get the wrong
message, and the poor programmer would have
a mess to unravel.

By now you probably guessed that we must be
ready to introduce a new tool to help with this
problem. Indeed, we are. . . .

Parameters—The Procedure Messengers

There are two types of parameters—rvalue pa-
rameters and variable parameters. The value pa-

95

rameter* is the Western Union messenger of
Pascal. It takes a value (or values) and sends
it to a procedure at the time that procedure is
called, but it doesn’t wait for an answer to take
back to the sender. It handles “one-way” com-
munications only.

ParamDemol in Listing 8-1 is a sample pro-
gram using value parameters. And here is a run
of the program:

Enter a sentence (press RETURN to end)

Can | have a piece of gum?
Can | have a piece of gum?
Can | have a piece of gum?
Can | have a piece of gum?
Can | have a piece of gum?
Can | have a piece of gum?
Can | have a piece of gum?
Can | have a piece of gum?
Can | have a piece of gum?
Can | have a piece of gum?

Enter a sentence (press RETURN to end)

t RETURN pressed here

First look at the Main Program section. By ini-
tializing the STRING variable Sentence to one
space, the WHILE statement will cycle through
at least once. Look at how we are calling the pro-
cedure RepeatPhrase. We are placing the vari-
able Sentence inside parentheses. Sentence is the
parameter we are passing to RepeatPhrase. This
is called the actual parameter because it is the
value actually passed to the procedure. Now look

* Also called “pass-by-value” or “call-by-value” param-
eters.

PROGRAM ParamDemol;
UAR Sentence STRING:

PROCEDURE RepeatPhrasel(lLine
UAR i @ INTEGER;

BEGIN
IF Lime <> °° THEN
FOR i := 1 TO 18 DO
WRITELM(Line;
END: (% RepeatPhrase *)

BEGIN (# Main Program #2

Sentenca = "
WHILE Sentence <> '’ DO
BEGIN
WRITELN;

WRITELN({ Enter a sentence

WRITE(= * 3:
READLN(Sentence };
WRITELN;

Listing 8-1.

STRING);

(% Don"t print if null string *)

(% Initialize to one space *)
{(# Continuve until null string %)

(press RETURN to endl’ 3;

RepeatPhrase{Sentance };

END; (% WHILE %)
EMD. (% ParamDemol #%)

U

[PROCEDURE GoloStore, |

= W
on

Utliidiif . c1y

N

O 1)

96

at RepeatPhrase. To the right of the procedure
name is what is called a parameter list. It’s the
list of variables which will “take on” the value(s)
of the actual parameters. In this example, the vari-
able Line is called the value parameter. It receives
the value that is in the variable Sentence when
RepeatPhrase is called. The type of the variable
is also declared in the parameter list, and it must
be of the same type as the actual parameter. The
variables in the parameter list are also called
formal parameters—they will “formally” repre-
sent the values sent to them in this procedure.

So, what we have here is the Main Program sec-
tion sending a string value to the RepeatPhrase
procedure. This string value is then stored in the
local string variable Line which is a formal pa-
rameter. After this variable is printed 10 times,
we return to the Main Program section and re-
peat the process as long as the user enters strings
from the keyboard. When the user enters an “em-
pty string” by pressing just RETURN, the Re-
peatPhrase procedure will not execute the FOR
loop (because of the IF-THEN statement check-
ing for these empty strings), the expression in
the WHILE loop will be FALSE, and the program
will end.

One-Way Communication

We said that the value parameter is used for
one-way communication. Let’s make a couple of
changes in our program and test this (Listing
8-2). In RepeatPhrase, we are setting the value
of Line to ‘Done’ after the FOR loop. Then in the
Main Program section, we print out the contents
of Sentence after RepeatPhrase is called. Here is
a run of the modified program:

Enter a sentence (press RETURN to end)
: Sure, here’s a piece for you.

Sure, here's a piece for you.
Sure, here’s a piece for you.
Sure, here’s a piece for you.
Sure, here's a piece for you.
Sure, here’s a piece for you.
Sure, here’s a piece for you.
Sure, here's a piece for you.
Sure, here’s a piece for you.
Sure, here’s a piece for you.
Sure, here’s a piece for you.
Again: Sure, here’s a piece for you.

Enter a sentence (press RETURN to end)
1

Again:

RETURN pressed

Listing 8-2.

PROGRAM ParamDemnZ;
VAR Sentence : STRINMNG:;

PROCEDURE RepectPhrase(Line : STRING);

UARR i : INTEGER;

BEGIN
IF Line <> '’ THEN
FOR i := 1 TO 18 DO
WRITELN(Lingl;
Lina := "Done’;
END; (% Print *)

(% Dont print if null string *J

BEGIN (% Main Program %)
Sentence := " 73 (# Initialize to one space *)
WHILE Sentence <> '’ DO (% Continue until null string *3J
BEGIN

WRITELN;

WRITELNC’ Enter a sentence (press RETURN to end) J;

WRITEC(= °)3
READLN(Sentence J;
WRITELN;
RepeatPhrase(Sentence);
WRITELN(Again: ' ,Sentence);
END; (% WHILE %)
END. (% ParamDemo2Z %)

Listing 8-3.

PROGRAM ParamDemo3;
VAR Sentence : STRING;
Number : INTEGER:

PROCEDURE RepeatPhrasef{lLine
UAR i = INTEGER;

BEGIN
FOR i 1 TO Number DO
WRITELNCiL,” ’,Linel;
(# Print %)

o
o =

END:

BEGIN (#* Main Program #*
REPEAT
WRITELN;
WRITELN(' Enter a sentence’ };
WRITEC' = *)3
REARDLN(Sentence };

WRITELN(’ How many times do you want

WRITE(' (B to end):
READLMN(Number ;
WRITELN:
RepeatPhrase(Sentance,
UNTIL MNumber = 8;
END. (% ParamDemo3d #%)

* 3

MNumber J;

You’ll notice that even though we change the value
of the formal parameter Line, the actual param-
eter Sentence remains unchanged. This means we
can now send information to a procedure with no
fear of tampering with the data of the original
variable!

Passing More Than One Parameter

Many more than one parameter can be passed
to a procedure. Let’s modify ParamDemol in a
different way so we can pass two parameters
(Listing 8-3). Here’s a run of this program:

Enter a sentence

How many times do you want it printed?
(0 to end): 500

1 | will not chew gum in class.
2 | will not chew gum in class.
3 | will not chew gum in class.

499 | will not chew gum in class.
500 | will not chew gum in class.

Enter a sentence

RETURN pressed

STRING;

Number

INTEGER);

it printed? J);

How many times do you want it printed?
(0 to end): O

Wouldn’t it have been nice if you had one of these
computers in school to handle the cruel and un-
usual punishment of having to write a phrase over
and over again? Anyway, notice that we used the
same variable name, Number, in the Main Pro-
gram section and as the formal parameter in the
RepeatPhrase procedure. These are still two sep-
arate variables. Changing the value of the formal
parameter Number (actually a local variable in
RepeatPhrase) will have no effect on the actual
parameter Number in the Main Program section
because of the name precedence rule which states
that the identifier will always refer to the variable
with the most limited scope.

Notice that in RepeatPhrase’s parameter list
there is a semicolon separating the type declara-
tion of the first parameter from the name of the
second parameter. If the parameter list includes
more than one variable of the same type, commas
are used to separate the names from each other,
and semicolons are used to separate the variable
type from the following variable name. There is
no semicolon at the end of the parameter list
(within the parentheses) :

semicolon

commas separating names between types

PROCEDURE Calendar(Day, Month : STRING;
Time, Date, Year : INTEGER;
Booked : BOOLEAN);

no semicolon at
the end of list

When this procedure is called, the actual param-
eters must be in the exact order as the formal
parameters:

Calendar('Wed’, 'Dec’, 6, 14, 1983, TRUE);

If they are out of order, you may end up trying to
stuff Month with a TRUE'!

Variable Parameters—Two Way Messengers

We’ve seen how value parameters are used to
pass information to a procedure. Now we’ll see
how to get information out of a procedure. The
type of parameter which can do this is a variable
parameter. If the value parameter is like a West-
ern Union messenger, the variable parameter is
like a telephone line. Program TwoWayCommuni-
cations in Listing 8-4 gives an example using vari-

able parameters (it’s a husband calling his wife at
her office). And a run of this program:

From the home to the office:
Could you please bring home a pizza?

From the office to the home:
Sure dear, I'll be right home!

As you can see, the effect of changing the for-
mal parameter in TheOffice procedure is very dif-
ferent from our example program ParamDemo2
(Listing 8-2) which used a value parameter. In
this case, changing the formal parameter Phone-
Call does affect the actual parameter Message. We
have set up ‘“two way communication” between
two sections of a program!

Look at the heading line in TheOffice procedure.
You’ll see the reserved word VAR in front of the
formal parameter PhoneCall. This is how you
can tell a variable parameter from a value param-
eter—variable parameters have the word VAR be-
fore the names of the formal parameters, value
parameters don’t. The word VAR must precede
all the formal parameters for each variable type
used :

2} “ OM+?Q\X/

\)

—
_— %
Z.

N

AN

ROCEDURY

N

=R
C’

2 K‘%doyr

V/ﬂV//A.i//A’_:{/A'

. A——

y ooz 27

W
Y 4
v

§\\
»

Listing 8-4.

PROGRAM TwolWayCommunication;
VAR Massage : S5TRING;

PROCEDURE TheOffice(VAR PhoneCall :

BEGIN
WRITELN(’ Message from the home:’)
WRITELN(PhoneCall };
PhoneCaltl = ’Sure dear,
END; (% TheQffice #*)

I

BEGIN (% Main Program %)
PAGE{OUTPUT I3
WRITELM;
Message @
TheOffice(MessageJ;
WRITELN:

‘Could you please bring home a pizza?' ;

WRITELN(’ Message from the office:’ J);

WRITELN(Massage);

END. (% TwolWauCommunication %)
PROCEDURE (Chug(VAR Wood, Matches : INTEGER;
TrackNumber : INTEGER;
EngineName : STRING;
VAR Distance : REAL);

In the above heading, the variables Wood,
Matches, and Distance are variable parameters.
The variables TrackNumber and EngineName are
value parameters.

Back to program TwoWayCommunication., If
you look at where the procedure is called in the
Main Program section, you won’t be able to tell
whether the actual parameter Message will end
up as a variable parameter or as a value param-
eter—it is necessary for you to check the heading
line of the procedure.

Why bother? You may be wondering, “Why
bother with variable parameters when I could use
global variables?” Good point! In fact, our Two-
WayCommunication program could have been
written using just the one global variable Mes-
sage. The main advantage gained by using vari-
able parameters is control. In a simple program
like this one, it probably would be fine to use global
variables and not variable parameters. However,
in a larger program in which you have procedures
calling other procedures, using variable param-
eters instead of global variables enables you to
exercise specific control over which variables the
procedures can affect and which variables they
can not affect. This capability is the cornerstone
of program reliability.

100

STRING);

ba right home!’;

- 3

The Inner Workings of Parameters

Here’s what actually happens with value and
variable parameters. With value parameters,
where only the value can be sent to a procedure,
Pascal creates a new variable in a new computer
memory location which is a duplicate copy of the
actual parameter being sent. The procedure which
receives the value can only access this copy, not
the original. If the procedure changes the copy,
the original is unaffected. However, with a vari-
able parameter, Pascal just assigns a second name
to the original variable (actual parameter)—the
name of the formal parameter used within the
procedure which is being called. There is really
only one variable in one memory location. When
the procedure makes a change in the contents of
its formal parameter, it changes the contents of
this memory location and the original variable is
changed. No duplicate variables were created.

Sending Empty Boxes

While using variable parameters, it is not nec-
essary to assign the actual parameter a value be-
fore the procedure is called. We can ‘“send” a
totally unused, empty variable to the procedure.
Look at this next program (Listing 8-5).

Here is how this program looks on execution:

Enter a number: —14.5

—14.500 cubed is —3048.62

Listing 8-5.

PRGGRAM EmptyBoxes;

UAR Number, Answer RERL s
PROCEDURE Cube(Base : REAL; VAR Result
BEGIN
Result = Base #% Base % Base;
END; (% Cube %)

BEGIM (% Main Program %)
PRGE(QUTPUT 2;
WRITE(Enter a number: ' }3
READLN(MHumber) ;
WRITELN;:
Cube(Number, Answer);
WRITELN(MNMumber:7:3,’
END. (% EmptyBoxes #)

cubed

You’ll notice that we are passing two parameters
to the Cube procedure. The second parameter,
however, was never assigned a value. When we
look at Cube, we see that the first parameter,
Base, is a value parameter and the second pa-
rameter, Result, is a variable parameter. The vari-
able parameter Result is really the actual param-
eter Answer “in disguise.” So when we place the
value of Base? into Result, it is also placed in
Answer. You can think of using variable param-
eters in this manner as equivalent to sending a
self-addressed stamped envelope to a friend. It’s
empty when you send it to your friend, but it con-
tains a letter (hopefully) when you get it back.

Look again at the heading line of procedure
Cube. Notice that we placed both parameters on
the same line. Many programmers prefer to write
the heading this way.

Expressions As Actual Parameters

Since all we are passing to a procedure when
using a value parameter is a value, we can use val-
ues and expressions rather than being restricted
just to variables. However, since a variable pa-
rameter requires a variable as a “return address,”
only variables can be used as the actual parameter
for variable parameters. Let’s say we have a pro-
cedure with the following heading:

PROCEDURE Compute(VAR Result : INTEGER;
Number : INTEGER);

Where Result is a variable parameter and Num-
ber is a value parameter. The following calls to
Compute are correct:

101

REAL 335

is ' ,Answer:7:31;

Compute(Revits, Malrons);
Compute(Magpies, ORD(n) + 27 x i);
Compute(Broomsticks, Dust x Rooms);
Compute(CherryPies, 1034);

The following calls are illegal because the first
parameter is a value or an expression and not a
variable as it should be:

Compute(131, Zorts);
Compute(ORD('z’), Position);
Compute(75 * i, Cucumbers);

Intrinsic Procedures

Guess what—you have been working with pro-
cedures and parameters since Chapter 2! We men-
tioned that Pascal was written in Pascal-—a num-
ber of statements we have used are actually Pascal
procedures which were written into the language
(predeclared). These are called intrinsics. Now
that you know the form of a procedure which uses
parameters, you can probably think of some your-
self. They are WRITE, WRITELN, READ,
READLN, GOTOXY, and PAGE. All of these
statements have a name, followed by a pair of
parentheses, with a variable(s) or value(s) in-
side.

The scope of these intrinsic or predeclared pro-
cedures is considered to be in a block surrounding
your program. If you invent your own procedure
and choose to name it Readln, then your proce-
dure will take precedence over the intrinsic

READLN which will no longer be accessible
within your program (or the section of your pro-
gram over which your procedure has scope). This
means that if you don’t like an intrinsic proce-
dure, you can write your own to replace it!

Once Again

Let’s summarize the use of the two parameters.
Value Parameters should be used when:

1. You want to send the value of a variable to a
procedure and to protect that variable from
access or change by that procedure.

2. You want to just send a value or expression
to a procedure.

Variable Parameters should be used when:
1. You want a procedure to change the value of

parameters just for sending values to a procedure
when speed is a consideration. This is especially
true when you are sending many very long strings
or large arrays (Chapter 10). When sending ordi-
nal variables, there shouldn’t be a problem.

QUIZ—PARAMETERS

1. Which of the following are value parameters and which
are variable parameters?

PROCEDURE ShunkCabbage(Number,

Address : INTEGER;
VAR Bugs : INTEGER;
VAR Pounds,

Mass,

Height : REAL;
City, Block,
Lawn : STRING);

True or False

a variable.
2. You want to receive a value from a proce- 2. Value parameters are used only to send values to proce-
dure. dures.
. . . 3. Variable parameters are used only to receive values from
In addition, since there is an extra computer pmcedureps_ y
processing step when using Yalue parameters (th,e 4. Using what you now know about parameters, what type
compu?er. has to r‘{lake a duphc.ate copy of the Yarl' of parameters (value or variable) would you guess are
able), it is sometimes a good idea to use variable probably used in Pascal’s intrinsic procedures?
g
Y i w 40
) (D [
3 MMNID
S ; T W
nwm D I
] @ umpum ll
gy S
I oS | N
SIS
) S
N Aes

7z

i

102

FUNCTIONS—THE COUSIN
OF PROCEDURES

Now that you know how to create procedures
with parameters, learning about functions will be
a snap. A FUNCTION is very similar to a proce-
dure. A function is a block with a name above it;
it can have its own CONSTant and VARiable dec-
larations; it has a BEGIN and an END; it can re-
ceive parameters and return a value. However,
there are a few differences between procedures
and functions. A procedure is called by using the
procedure name as a statement (along with its
parameters). It stands by itself as a statement.
A function can be used almost any place a vari-
able or constant can be used. It will not stand
alone as a statement (just like a variable or ex-
pression can’t stand alone as a statement—i +4 5
is not a statement). In other words, a procedure
s a replacement for a statement and a function
is a replacement for an expression. We have al-
ready introduced a few Pascal intrinsic functions
—functions which are built into Pascal. They are
CHR, ORD, and ODD. Each one of these func-
tions returns a value of a different type—CHR

returns a CHAR value, ORD returns an INTE-
GER value, and ODD returns a BOOLEAN value.
These functions can be substituted for a value of
like type anywhere within a program. After the
function has been called, the value it returns will
occupy the location in the statement where the
function was. In this way it acts like a variable.

The value a function returns must be a “sim-
ple type,” that is, a variable that has only one
value. This means you can’t use a function to re-
turn a STRING value because a STRING isn’t a
simple type—it’s actually a series of CHARs
strung together (a series of walues strung to-
gether). In order to have a function return a
STRING as a result, you can use variable pa-
rameters. However, this returned STRING value
will not occupy the position of the function name
in the statement from which the function was
called. For a good example of this see Listing
8-10.

Let’s look at the procedure Power from the
Loan Payment programs again (Listing 8-6).
Now let’s convert it into a function (Listing 8-7).
Let’s look at the difference between a procedure
and a function. Starting at the top with the head-

Listing 8-6.

PROCEDURE Power;

UAR X REAL:
Yy, i INTEGER:
BEGIN
®x = IntarestPerPeriod + 1j; (%
Yy = NumberOfPayments; (%
Temp = 1.8; (%
FOR i == 1 TO y DO (%

Temp = Temp % x;

END; (% Power #%)

Routine which will *1
raise x to the y power, *%)
that is, xTy
Answer is in Temp * 3

{(x >= B) *}

Listing 8-7.

FUNCTION Power(x REARL; y INTEGER}

REAL ;

(% Function which raises x to the y power (xTyl

y must be greater than B

URR i INTEGER;
Temp : REAL;

BEGIN
Tamp = 1.4;
FOR i := 1 to y DOC

Temp = Temp % Xj;

Power :t= Tamp;
END; (% Power %)

*)

ing, you’ll notice that the keyword FUNCTION
replaces the keyword PROCEDURE. Next, there
is the function name. However, the function name
has a bigger job to do than just to give the func-
tion an identifying label. This name will be the
means to return a value to the expression in which
the function was called (as we will soon see).
Next on the line come the parameters. The syntax
for listing these formal parameters is exactly the
same as in procedures. And finally, we have the
value type which our function Power will return.
A colon (:) must separate the parameter list from
the function’s type. Other than the heading, there
is one other difference between a procedure and
a function. Somewhere in the function we must
assign the final value to the function name (Power
:= Temp;). Again you can see that the function
name does act like a variable.

In the Loan program, we stored the result of
X }y in the global variable Temp. By using a func-
tion, we don’t have to bother. Here are some ex-
amples of how we can invoke (call) this function
and how it will look upon execution:

1. WRITELN('S f 6 = ', Power(5, 6));
5 1 6 = 1.56250E4
2. Base := 1.212;

n = 17;

WRITELN(Base:5:3, f n,' = 'Power(Base, n):7:3);

1212 § 17 = 26.275

Exponent := 7;

Result := Power(Num1, Exponent) 4+ Power(Num2,
Exponent — 3);

WRITELN('The result is ’, Result:7:3);

The result is 3290.59
4. WRITELN(Power(Power(5, 3), 2):7:2);
15625.0

As you can see, the function can be inside a
WRITELN (Nos. 1, 2, 4) or part of an expres-
sion (No. 3). We can pass parameters to a func-
tion as values (No. 1), as variables (Nos. 2, 3),
as expressions (No. 3), or even as a function
(No. 4). Example 4 is executed by calling the
inner Power first in order to get the parameters
for the outer Power.

Let’s modify this function so it can handle neg-
ative exponents as well as positive exponents.
You’ve read that:

B-ris equivalent to

Bn

If n was equal to 3, we would have:
1 1,11
B B B*B

AHA'! A repetition which could be controlled by
a FOR loop! We can create a second FOR loop
in our function which executes only if the expo-
nent is negative. Here in Listing 8-8 is a revised
version of Power:

3. Num1 :: 3.18; . . .
Num2 = —1.211; The expression Temp / x is derived from:
Listing 8-8.
FUNCTION Power(x : REAL; y : INTEGER) : REAL;

{(#% Function which raises x to the y power (xTy)

4y may be positive or negativ
VAR i INTEGER;
Temp REARL ;
BEGIN
Temp = 1.8;

IF y >= B THEN
FOR i := 1 to y DO
Temp = Temp % X
ELSE IF x = 8 THEN Temp
ELSE
FOR i
Temp

%]

t= 1 to

-y DO
Temp / x:

Power Temp;
END; (% Powar %)

a

%3

{#% Check for base of B #

104

Temp % (1 / x) > Temp / X

Since we are dividing by a variable (x), we must
protect against the occurrence when x might equal
0. We set Temp to 0 and skip the division section
if this happens.

Now let’s take our Power function and plug it
into the Loan Payment program from Chapter 5
(Listing 5-7). First, here is the loan formula
again:

RegularPayment =

Principal X InterestPerPeriod
1 — (InterestPerPeriod -- 1)—NumberOfPayments

By using the Power function, we are able to make
the Calculate procedure resemble the actual for-
mula more closely (Listing 8-9).

Return More Than One Value

Even though a function can return only one
value through its name, it is possible to use vari-
able parameters to return additional values, in-
cluding multivalue types like STRINGs. Listing 8-
10 is an example.

Here is a run of this program:

99 I've been to San Jose! Me too!

As you can see, our SanJose function was able to
pass back a value and a couple of strings. When
the execution of the WRITELN in the Main Pro-
gram section began, the two variables, Box1 and
Box2, were empty. But when the function was
called, these two variables were stuffed with mes-
sages which could then be immediately printed out.

Pascal Intrinsic Functions

As you may have guessed, in addition to Pas-
cal’s intrinsic procedures there are a number of
built-in (intrinsic) functions which can be used
in your programs. We will now cover some of
them. (We will skip UCSD Pascal’s intrinsic
String Functions and Procedures until the next
chapter.) We’'ll list them in alphabetical order:

ABS(x)—This function will return the absolute
value of the parameter x. The absolute value is
determined by making x a positive number. If
the number is negative, it chops off the minus
sign. If the number is positive to begin with,
ABS leaves it alone. x can be either a REAL or
an INTEGER and the type of the result is the
same as X's type.

CHR(x)—This one you already know from Chap-
ter 3. It returns the CHAR type value which has

105

the ASCII value (ordinal value) of x. x must be
an INTEGER.

ODD(x)—Another old friend. This function will
return a BOOLEAN TRUE if the INTEGER
parameter x is an odd number, otherwise it will
return a FALSE.

ORD(x)—And another familiar function. This one
will return the ordinal value of the parameter x.
x may be any ordinal variable (INTEGER,
CHAR, or BOOLEAN)—a variable which has
an order associated with it. ORD(x) will return
the position that x holds in its variable type. For
INTEGERs, it’s the integer itself, for CHARs
it’s the ASCII value, for BOOLEANSs it’s 0 for
FALSE and 1 for TRUE.

PRED(x)—This function will return the prede-
cessor of the ordinal parameter x. It can be used
on the same variable types as ORD. PRED(C’)
is the character ‘B, PRED(TRUE) is FALSE
and PRED(25) is 24. If x is the lower bound of
the range of possible values of x’s type, an error
will result (e.g., PRED(FALSE) does not com-
pute because nothing precedes FALSE).

ROUND(x)—This function will round off a REAL
number (x) to the nearest INTEGER. Exam-
ples:

ROUND(17.48) - 17
ROUND(3.5) > 4
ROUND(—0.31) -» 0
ROUND(—56.51) —» —86

ROUND(—1.499) » —1

SQR(x)—will return the value of x squared or x2
or x * x. The result will be of the same type as
x (either INTEGER or REAL)

SUCC(x)—This function is opposite of PRED(x).
It returns the successor of the ordinal value x.
SUCC(CC’) is the character ‘D, SUCC(FALSE)
is TRUE and SUCC(25) is 26. Again, if x is
equal to the upper boundary of the range of the
variable type, you will get an error.

TRUNC(x)—This function will convert a REAL
to an INTEGER like ROUND does. However,
this function doesn’t do any rounding. It trun-
cates or chops off everything after the decimal
point:

TRUNC(5.99999) - &
TRUNC(—3.99999) » -3

There is no function to convert from INTEGERs
to REALSs because none is needed. A REAL vari-
able can be assigned an INTEGER value but an
INTEGER variable can’t be assigned a REAL
value.

Listing 8-9.

(d====== = %3
(% *)
(# Program Language: PASCAL *3
(# Program Title: Loan Payment - version 3 *)
(# Subtitlie: Introducing the FUNCTION Power which #)
1 can handle negotive exponents. *)
(% *)
(% Author: Mitch Waite ~ David Fox *)
(% Program Summary: Calculates the regular payment %)
(% an a loan. *)
(% *)
(#== = R — S =%)

PROGRAM Loan3;

UAR Principal, Annual Interest,
Regu!l arPaymaent, Tota!lInterast : REAL;
PaymentsPerYear, TermInYears : INTEGER;

PROCEDURE ClearScreeaen;

BEGIN
PAGE(QUTPUT);
END; (% ClearScraen %)

FUNCTION Power(x : REAL:; y : INTEGER) : REAL;
(% Function which raises x to the y pouwer CxPyl
Yy may be positive or negative %)

VAR i : INTEGER;
Temp : REAL;

BEGIN
Tamp = 1.0;

IF y >= 8B THEN

FOR i =1 to y DO
Temp = Temp % x
ELSE IF x = 8 THEN Tamp := B (% Check for base of B *)
ELSE
FOR i := 1 to -y DO

Temp = Temp ~ x;

Power :1= Temp:;
EMD; (% Powar %)

108

PROCEDURE GetData;

BEGIN
ClearScreen:
MRITELNC =% LOAN PAYMENT *%° :28);
WRITELN;
WRITELN;
WRITE(Enter amount of loan: ’ J;
READLN(Principal 33
WRITE(' Enter the annual interest: ’ J;
READLN(Anrnual Interast };
WRITE(® Enter payments per year: *)3
READLMN(PaymantsPerYear };
WRITE(Enter term in years: * J;
READBLN(TermInYears J);

END; (% GetDaota %)

PROCEDURE Calculate:
UAR InterestPerPariod : REAL;
NumberOfPayments : INTEGER:

BEGIM (% Calculate %)

InterestPerPeriod = (Annual Interest - 188) / PaymentsPerYear;:
NumberOfPayments := PaymentsPer¥Year # TermInYears:

RegularPayment := Principal #%# InterestPerPeriod
s

{1 - Power{(InterestPerPeriod + 1, -NumberOfPayments});

TotalInterest := RegularPayment % NumberOfPayments - Principal;
END; (% Calculate %)}

PROCEDURE Printfinswer;

BEGIN
WRITELN;
WRITELN;
WRITELNC Reguiar payment = % ,ReguliarPayment:7:2);
WRITELN;
WRITELNC’ Total interest on loan = $,Total Interest:7:2);
WRITELN;
HWRITELN;
END; (% PrintAnswar %)

107

BEGIN (# Main Program %)
GetData;
Calculates
PrintAnswer;
WRITELN(That' " s all
END. (% Loan3 %)

folks...BYE' J);

RealVailue := IntValue; < This is legal

The Transcendental Functions

The following functions are called TRAN-
SCENDENTAL functions. Explaining these in
depth is beyond the scope of this book. If you
don’t know how to use them, you may check with
a trigonometry book. If you are using certain ver-
sions of UCSD Pascal (e.g., Apple), these func-
tions are not automatically available for your use.
They are stored in a special library of functions
and procedures and are available upon request.
This saves processing time and memory space by
not forcing the compiler to provide these func-
tions unless necessary. If you want to use them,
all you have to do is place the line:

USES TRANSCEND;

immediately after the PROGRAM Name; line
and before anything else in the program. This in-
structs the compiler to pull these functions out of
the library for use in your program.

Bringing in routines which you
don’t need just weighs down the
computer. Uncle Pascal says: He
who brings his entire wardrobe for
a row across the lake ends up being
the best dressed fish around!

In the following functions, all parameters can
be either INTEGER or REAL. All values returned
are REAL and the Angle parameters are in ra-
dians:

ARCTAN(x) or ATAN(x) (UCSD Pascal)—re-
turns the inverse tangent of x in radians.

COS(Angle)—returns the cosine of Angle.

EXP(x)—returns the value of the mathematical
constant ‘““e” raised to the xth power (e).

LN(x)—returns the value of the natural loga-
rithm of x. x must be greater than 0 or there
will be an error.

LOG(x)—returns the value of the logarithm to
the base 10 of x. This function may not be avail-
able in your version of Pascal. It is available in
UCSD Pascal.

SIN(Angle)—returns the sine of Angle.

SQRT (x)—returns the square root of x. The value
of x must be a positive number or there will be
an error.

Let’s take a couple of these functions and use
them in a program. Listing 8-11 shows a Power
function which uses EXP and LN. This function
is much faster than our old version, but it can only
deal with a base (x) which is greater than 0.0.

Since the value passed to the function LN must
be greater than 0 (a very picky eater!), we check

Listing 8-10.

PROGRAM Uacation;
UAR Boxl, Box2 STRING;
FUNCTION SanJose(Numberi,

VAR Messagel,

Number2
Message?Z

BEGIN
SanJose
Meszagel
Message?2

END: (% San

:= Mumberl % Numberl:
(-’ I'"ve kbesn to
= (7 Me tool’ 3
Jose %)

San Jose

BEGIN (% Main Program %}
HRITELN(SanJose(3,
EMD. (% Ugcation %)}

Boxl, BoxZ23, Bo

o
s T Y

108

INTEGER;

STRING? IMTEGER:

L

%1, Box2i;

Listing 8-11.

FUNCTION Powerix : REAL; y : INTEGER) : REAL;

(% Function which raises x to the y power {(x%ty) using
TRANMSCENDTAL FUNCTIONS - y may be positive or negative,
x must be greater than 8.8 L

BEGIN
IF % {= B THEN WRITELMN(’ #** Error - Base <= B.8)
ELSE Power := EXP{y * [N(x));
END; (% Powar %)

the value of x before giving it to LN. Depending on

your application, just noting the error may not .

be enough. You may need to return some message END; (* WakeUp *)
value (called a flag) indicating an error or let the

program abort execution no parameters or function type

FUNCTION HoursSlept;#”
BEGIN
FORWARD—NAMING A PROCEDURE :

OR FUNCTION BEFORE ITS TIME END: (* HoursSlept *)

From time to time, you will find it difficult (or

impossible) to avoid calling a procedure or fune- To use FORWARD, all you need to do is separate
tion before it is defined. If you find yourself .in the heading of the procedure or function from its
this predicament, don’t fret! You can use the block (shades of the French Revolution!). Later
FORWARD reference to tell the compiler to be when the procedure or function is defined, don’t
patient, the procedure (or function) is coming. include the parameters or the function type.

Here’s an example.

PROCEDURE WakeUp(Time : INTEGER); FORWARD; QUIZ—FUNCTIONS

1. Based on what you now know about functions and proce-
dures, deduce which of the following underlined “mod-
ules” are functions and which are procedures:

A. IF Whistle(n) THEN Wait(50);

PROCEDURE Sleep; B. AnimalList(Zoo, Circus, Wild) ;

BEGIN C. Total : = Sum(One, Two, Three) + LastChance;
: D. FireCheck(3, HoseDown(House));

True or False
IF HoursSlept(GoodSleep) >= WellRested THEN 2. A function may be declared as a STRING type.

WakeUp(Alarm); 3. A function may accept as many parameters as you like.
END; (* Sleep *)

FUNCTION HoursSlept(Minutes : INTEGER) : REAL;
FORWARD;

WRITELN('Zzzz27’);

4. A function invocation (call) may stand alone as a state-

no parameters TRt
PROCEDURE WakeUp;/ 5. A function can use the value of another function as one
BEGIN of its parameters.

109

chapter 9

Strings and Long Integers

This chapter is all about STRINGs and LONG
INTEGERs. “STRINGSs”, you may say. “But I al-
ready know about STRINGs”. Ah, we have barely
scratched the surface on what you can do with
STRINGs. We will show you how to surgically re-
move any character in a STRING, how to stuff
new characters in the middle of a STRING, and
how to make STRINGs into the input/output
workhorses of Pascal by using them in conjunc-
tion with LONG INTEGERs.

We mentioned before that a STRING is really
a series of CHARs strung together. This is liter-
ally true. When Pascal was created, STRINGs
were not a part of the language. Every time some-
one wanted to store a series of characters together,
they had to define a customized variable type
which was really an array of characters. Think of
an array as being like a string of Christmas lights.
The elements are the same type (small light
bulbs), but they can be different colors (different
values). The string of lights is treated as a single
unit, but you can access individual bulbs and re-
place them if you like. (We'll cover arrays in the
next chapter.) Fortunately, the creators of UCSD
Pascal included a standard variable type called
STRING, along with a set of powerful intrinsics
to manipulate these STRINGs. The STRING is
still an array of CHARs but we don’t have to
worry about screwing in light bulbs, hanging the
lights, or plugging them in, All the dirty work
has already been handled.

MAXIMUM STRING LENGTH

Unless otherwise specified, all STRINGs de-
clared in UCSD Pascal can have up to 80 charac-
ters in them (their default length). This maxi-
mum STRING size can be adjusted at the time

110

of declaration by square brackets surrounding the
STRING size (called a “length attribute”) :

VAR SmallString : STRINGI5];
BigString : STRING[255];

The absolute maximum STRING size is 255 char-
acters. If you exceed the declared size of a
STRING during entry from the keyboard, Pascal
will politely ignore all extra letters. But you won’t
be able to backspace to make a correction if you
go over the edge. However, if you try to assign
too many letters to a string within the program,
you’ll get an overflow error:

SmaliString := 'l am NOT a small string?’;

This will cause an error because SmallString’s
length can be no longer than five characters.

Accessing the Elements

How do we change the light bulbs of the string?
Each character in a STRING can be identified by
referring to its position in the STRING. We indi-
cate this by using the [] brackets. For example,
the first element (or character) of the STRING
Message would be referred to by Message[1], the
seventh element by Message[7]. Look at this pro-
gram fragment:

Message := 'l think | see two burnt out blubs.’;
WRITELN(Message([4]);

On execution, an ‘h’ will be printed out which is
the fourth character in the string (don’t forget
to count the spaces as characters!).

Let’s say we want to correct the spelling of the
last word in the STRING stored in Message,
‘blubs.” The misplaced letters are in positions 30
and 31.

Message[30] := ‘u’;
Message[31] := 'I’;
WRITELN(Message);

On execution we would get:
I think | see two burnt out bulbs

Going in the other direction, we can copy a char-
acter into a variable:

Ch := Message[16];
WRITELN(Ch);

and a ‘w’ will be printed out. In order for this to
work, the variable Ch must be ¢« CHAR variable.
This is because the elements of a STRING are
CHARs and, as we (hopefully) all know, you
can’t mix variable types.

The following program segment will print our
string out backwards:

FOR i := 33 DOWNTO 1 DO
WRITE(Messageli]);

If this were executed you would get:

sblub tuo tnrub owt ees | kniht |

That’s a pretty neat trick, but it would be very
impractical for you to have to count the number
of characters in a string in order to perform this
feat! Of course, there is another way

STRING INTRINSICS

This brings us right to the subject of STRING
intrinsics. We will introduce you to each of the
built-in STRING functions and procedures of
UCSD Pascal.

LENGTH—How Long Is Your STRING?

This function returns the number of characters
tn a STRING as an INTEGER. Listing 9-1 gives
a program based on our earlier backwards print-
ing example.

Here’s a run of this program:

Enter a sentence (or RETURN to end)
: ANNA SAW OTTO

OTTO WAS ANNA

Enter a sentence (or RETURN to end)

Return pressed

=i

b3

STRI nGsNN \\
ALTSGR%D

0 FNED
£ THE s

0UP
HE

U

R

v

F s

oy

RFoX

111

Listing 9-1.

PROGRAM Backwardsbhirite;

UAR Santence : STRING;
i : INTEGER:
BEGIN
PAGE(QUTPUT):
REPEART
WRITELN;
WRITELN(Enter o sentence
WRITEC(= 33

READLMN(Sentence);

FOR i := LENGTH(Sentence}
WRITE(Sentencelil);
WRITELN:.

UMTIL LEMGTH{Sentence) =
END. {% Backwardskrite *%3}

a;

As you can see if RETURN is pressed without
entering any characters, the length of Sentence
will be zero, and the program will end.

Centering Your Lines—Here is a useful tool to
make your programs look nice. It’s a procedure
which will horizontally center a string on your
screen (Listing 9-2).

Here’s a run of the program:

** CENTER DEMO **

This program will make it
very easy to center text
on your screen.

The End

We placed a constant at the top of the program
that can easily be changed for different screen
widths. Planning like this is important if you want
your program to be transportable to other com-
puters.

Look at the Center procedure. The string to be
centered is received through the value parameter
Sentence. Next, we store the length of Sentence
in the variable Len. In the next line we implement
the tabbing technique using formatted printing.
We set the field-length to equal the length of the
string in Sentence plus a right margin. The mar-
gin is calculated by subtracting the length of the
string from the ScreenWidth (this yields the to-
tal number of empty spaces on the line) and di-
vide this number by two (for equal margins on
both sides). This procedure means not having to
hand count your strings in order to center them

(or RETURN to

112

endl)’ J;

DOWNTO 1 DO

properly! Also, this allows you to center strings of
different lengths which are entered from the key-
board—there is no way to know how long they’ll
be in advance.

Efficient Code vs. Clear Code—You may have
noticed that we have an extra ‘“‘unnecessary” step
in the Center procedure. We calculate the length
of the string in a separate statement rather
than doing so within the WRITELN statement.
We did this for increased clarity. There were too
many parentheses in the WRITELN when we did
it the other way and it looked rather intimidating.
This brings up a good point. Many times the most
efficient way to write a routine isn’t the best way.
Never sacrifice clarity for brevity! Stretch out a
procedure if it will make it easier to follow.

What good is it to make your pro-
gram more efficient if no one (in-
cluding yourself) can understand
it! Uncle Pascal says: He who
serawls his will on the back of a
postage stamp bequeathes nothing
but confusion to his heirs.

Playing With Nothing

We now come to an interesting problem. As you
know, you can set a STRING to a length of 0:

NullString = ' *;

But you can’t do the same with a STRING ele-
ment. Doing this:

NullString[5] = ' %

Listing 9-2.

PROGRAM CenterDemos;

COMST Screenlidih 483

VAR CutString STRING;

PROCEDURE Center(Santenca STRING ;s

(% Procadure to center a string on the screen *)

VAR Len INTEGER;
BEGIN
Len := LENGTH(Sentenca);

WRITELN{(Santence:len + (Screenlidth

EMD; (% Conter %2

BEGIN
OutString &=
PAGECOUTRUT ;5

(% Main Program %)
"The End’ ;

WRITELN:
Canter(’ % CENTER DEMG
WRITELN;
Canter(’ This program will

#%" 13

make
Canter(’ on the screen.’ };
WRITELN:
HRITELN:

Center(OutSiringi;
END. (* CenterDemo %)

will yield a compiler error. Remember the rule
that CHAR variables must have one and only one
character in them. Doing the above would break
that rule.

Then what happens to the elements of a
STRING when you set the string to null? That’s
easy—an empty (null) string has no elements.
It’s empty! This means that if you {ry to access
a nonexistent element of a STRING, you will get
an error. For example, let’s say we place the
string ‘French’ in a STRING variable called
Language.

Language 'French’;
WRITELN(Language[7]);

If we try to access the seventh element, we will
get an error because there is no seventh element
—the length of the STRING is only 6. This means
that you have to protect your programs from ref-
erencing nonexistent elements of a STRING by
first checking the STRING length!

it’ s
Center{’ very easy to center text’ J;

113

lLenl DIV 2);

POS—Finding a STRING Within a STRING

Let’s say you want to search inside one STRING
for a specific pattern of characters. Here is a func-
tion which not only lets you know if it found the
hidden pattern, but tells you exactly where it is.
Here’s an example:

SourceString =
'Can you find where the treasure is hidden?’;
Gold := ‘'treasure’;
HidingPlace := POS(Gold, SourceString); .
WRITELN('The treasure was hidden at POSition ’,
HidingPlace);

On execution we get:
The treasure was hidden at POSition 24

The function POS will return the position in the
SourceString of the first character in the looked
for pattern (the ‘¢’ in ‘treasure’). The value re-
turned is an INTEGER. If there is more than one

occurrence of the pattern in the SourceString, the
first one in line wing the prize. If there are no
matches of the pattern in the SourceString, the
value returned is 0.

One good use of this function is in programs
which contain interactive dialogues (the famous
program Eliza is a good example of one). The user
enters a complete sentence, and the program must
scan it for a specific word or words. Listing 9-3
below gives a program fragment to demonstrate
this use.

On execution, we get:

How are you today? I'm feeling great today, thank you!

So glad to hear it, Rachael.
| feel rather chipper, too!

If any one of our “key words” is found in Sen-
tence, the sum of the expression will be greater
than 0 and the compound statement will be exe-
cuted. Another way to write this line would be
as follows:

IF (POS(’fine’, Sentence) > 0)
OR (POS('great’, Sentence) > 0)
OR (POS(’'Ok’, Sentence) > 0)
OR (POS(’terrific’, Sentence) > 0) THEN
BEGIN

When using POS, make sure you place the pattern
to be searched for before the SourceString. To
make this easier to remember, you may read the
POS function as “I'm looking for the position of
a pattern in this SourceString.” Some BASICs
have a function that does what POS does. This
function is called different things depending on
which BASIC is involved. Two that we are aware
of are INSTR and SEARCH.

CONCAT—The Pot of Glue for a Ball of STRING

This function allows you to “glue” two or more
STRINGs together to form a new STRING. This

is known as “CONCATenation.” Here’s an ex-
ample:

Man := 'Husband’;

Woman := 'Wife’;

Married := CONCAT('Now you are ’, Man, ' and ’,
Woman);

WRITELN(Married);

which will print:
Now you are Husband and Wife

We stuck four STRINGs together and placed
this new STRING in Married. You’ll notice that
two of the strings were contained within the vari-
ables Man and Woman.

It’s also possible to do the following:

Train := ' ' ; (* Initialize Train to empty string *)
FORi : = 1TO 5 DO

Train := CONCAT(Train, '-BoxCar’);
Train := CONCAT(’Engine’, Train, '-Caboose’);
WRITELN(Train);

This will print:
Engine-BoxCar-BoxCar-BoxCar-BoxCar-BoxCar-Caboose

After making sure there was nothing in the
STRING Train, we kept adding on ‘-BoxCar’s to
its contents and storing the new STRING back
into the same variable (Train). Of course, the
preceding output will not fit on a 40 character
screen, but you get the idea. Unfortunately, how-
ever, CONCAT is horrendously inefficient at exe-
cution time—it’s slooow!

In BASIC, concatenation is usually carried out
in the following manner:

C$ = “Hi there” + A$ + “Good bye”
using the plus sign to “add” strings together.

COPY—How To Clone a STRING

With this function we can copy any section of a
STRING and do what we please with it. Here is
an example:

Listing 9-3.

WRITE(’ How are you today? * 1;
READLN{ Sertence);
IF (POS(’' fine”,
+ POSC Ok’ ,
BEGIN

WRITELN{ 50 glad to hear it ’
rather chipper,

WRITELNC I feel
END;

Sentence) + POS{’ great’,
Sentence) + POS(’ terrific’,

Sentence?
Sentencel}) > THEN

Mama,” .")3
too!’ };

Payment := ‘Here is a ten dollar bill for you.’;
Counterfeit := COPY(Payment, 11, 15);
WRITELN(Counterfeit);

This will print:
ten dollar bill

The syntax for COPY is:
COPY(SourceString, StartPosition, Size)

This can be read as “copy from the SourceString
beginning at the StartPosition and take a total
of Size characters.” Remember that the character
at StartPosition is the first character to be copied.
If StartPosition or Size is outside the range of
the STRING (e.g., greater than the STRING
length) then the call to COPY returns a null
string.

If we only want to copy the eighth character of
a STRING, we would say:

COPY(Flaxmings, 8, 1);

You may ask, “Why bother using COPY for only
one character of a STRING when we could di-
rectly access the character using Flaxmings[8]?”
Go ahead and ask Ah yes, that’s an excel-
lent question! The answer is that COPY always
returns a STRING, even if it’s a STRING of
only one character. You'll remember that when
you are referencing an element in a STRING
(Flaxmings[8]) will always return a CHAR.
This is an important point to remember since you
can’t mix variable types. Also, if Flaxmings is
less than eight characters long, referencing
Flaxmings[8] will yield an error, while COPY
(Flaxmings, 8,1) will just return a null string.

Sometimes you may want to copy only the last
part of a string. Here is an example which will
copy from the fifth character to the end of the
string :

BackEnd =
COPY(BackEnd, 5, LENGTH(BackEnd) — 5 + 1);

The general formula to copy from a specific posi-
tion to the end is:

COPY(SourceString, StartPos, LENGTH(SourceString)
— StartPos + 1);

BASIC’s closest function to COPY is called
MIDS$. The main difference is that the third pa-
rameter is MIDS$, the size, is optional. In COPY,
it is required.

115

DELETE—Vacuuming up a STRING

Here is a procedure which has no equivalent in
BASIC. We can use DELETE to vacuum up and
discard a section of a STRING. Here is an ex-
ample:

CleanUp =

"My, your floor sure looks good and dirty today!’;
DELETE(CleanUp, POS('and’, CleanUp), 10);
WRITELN(CleanUp);

and if this were executed:

My, your floor sure looks good today!

Here is the general syntax for DELETE:
DELETE(SourceString, StartPosition, Size);

DELETE will remove Size characters beginning
with the character at StartPosition. In our Clean-
Up example, you can see that we were resourceful
(lazy?) and used the POS function to return the
StartPosition rather than counting by hand. When
using DELETE if your parameters are outside the
length of the STRING, SourceString will be left
unaffected.

Listing 9-4 shows an example that removes all
of the spaces from a STRING. And here is how it
looks when run:

Enter a sentence (or RETURN to end)
. | think I'll put the garbage into the compactor.

Ithink P'll put the garbage into the compactor.
IthinkI’ll put the garbage into the compactor.
Ithinkl’liput the garbage into the compactor.
Ithinkl’llputthe garbage into the compactor.
Ithinkl’llputthegarbage into the compactor.
Ithinkl’llputthegarbageinto the compactor.
Ithink!’llputthegarbageintothe compactor.
Ithinkl’liputthegarbageintothecompactor.

Enter a sentence (or RETURN to end)

Return pressed

The WHILE loop will continue to cycle through
until there are no more spaces to delete. How else
could this program be terminated besides enter-
ing a null string (pressing RETURN without typ-
ing any characters) ? If you said, “Enter some
spaces”, you were right. If all you entered was a
bunch of spaces, they would all be deleted one by
one, and you would be left with a null string.

INSERT—Butting into the Conversation

Here is another procedure which has no BASIC
equivalent. INSERT is the opposite of DELETE.
Guess what INSERT does. Refer to Listing 9-5
on page 117.

Listing 9-4.

PROGRAM NoSpace;

(% Program to demonstrate the DELETE

UAR Space, Sentence : STRING;
BEGIN
Space =" ‘3
PARGECOUTPUT);
REPEAT
WRITELM;

intrinsic %)

(% Set 10 one space #*)

WRITELN{ ' Enter a sentence (or RETURN to end) };

WRITEC = * 23
READLN(Sentance);

WHILE POS(Space,
BEGIN
DELETE(Sentence, POS(Space,
WRITELN(Sentance);
END;

UNTIL LENGTH(Sentence) =
EMD. (% NoSpace %)

1%H

On execution, we get:
Myrtle 2 cents keeps butting 2 cents in!

As you can see, INSERT places a string inside of
another string and therefore increases the string’s
length. Here is the general format of INSERT:

INSERT(Source, Destination, Position);

This instrinsic procedure INSERTs a Source
string into a Destination string at Position in the
Destination string. Listing 9-6 is another example.
And a run:

Enter a sentence
: What’s happening?

What's happening ?

What’s happenin g ?

What's happeni n g ?

What's happen i n g ?
What’s happe ning ?
What's happening?
What's hap pening?
What's ha ppening?
Whats happening?
Whats happening?

Whats happening?
What s happening?
What's happening?
What's happening?
What's happening?
What’'s happening?
What's happening?

Sentence} > 8 DO

Santenca),

116

13;

Do you know why we used DOWNTO instead of
TO in the FOR loop? We had to start at the end
of the STRING and work forward for this pro-
gram to work correctly. If we did it the other way,
we would end up with a bunch of spaces at the be-
ginning of the STRING—they would be inserted
one after the other, pushing the text over to the
right. Remember that INSERT changes the length
of the STRING? Every time we inserted a space,
the first character in the sentence we entered
would move one more space away—like the pro-
verbial carrot held in front of the mule. Try it
out for yourself as an experiment (the program,
that is, not the carrot).

Overflow—If we try to insert enough charac-
ters into a string to cause it to exceed its declared
length, the INSERT statement will be ignored and
the original string will be untouched.

INPUTTING NUMBERS WITH STRINGS

This is one of the sections we’ve been talking
about throughout this book. It’s all about creating
input routines which defy crashes—even a back-
wards monkey won’t be able to cause a program
using these routines to crash, even if he walks on
the keyboard !

The Problem. When you are entering a numeric
value into an INTEGER or REAL variable, it is
all too easy to make a mistake (enter a nonnu-
meric character) and cause the program to bomb

Listing 9-5.

Complaint := 'Myrtle keeps butting
Nosay ‘2 cents '3
INSERT(Nosey, Complaint,
INSERT(Nosey, Complaint,
HRITELN(Complaint 33

83;
38);

int’;

Listing 9-6.

FROGRAM SpaceOut;

(*# Program to demonstrate the INSERT intrinsic #)

UAR Space, Sentence : STRING:

i : INTEGER;
BEGIN
Space =" ';
PARGE(OQUTPUT 33
WRITELN(Enter a sentence’);
WRITE(' = *)3

READLN(Sentence);

FOR i :=
BEGIN
INSERT(Spacae, Sentence,
WRITELN(Sentencel:
END;

ils

END. (% SpaceQut #)

out. Some versions of Pascal will die as soon as
you enter an illegal character, some will wait to
commit suicide until you press RETURN, some
won’t allow back spacing to make corrections, and
some will assume you’ve finished entering your
number as soon as you press an illegal character.
All versions of Pascal are generally unforgiving
of the indefensible crime of entering a letter into
a numeric variable.

The solution is to use STRINGs for all inputs
and then use functions or procedures to convert
the STRING to the appropriate number type. You
may then proceed to do what you will with the
number (+ — * or / it). The final result can be
printed out as it is, or you may convert it back
to a STRING to fancy it up (insert commas, deci-
mals, dollar signs).

Converting STRINGs to INTEGERS

Our first example (Listing 9-7) will allow you
to convert a STRING to an INTEGER. Here is
the procedure. To use this procedure just write:

Val(StringNumber, IntNumber);

(% Sat to one space

117

*)

LENGTH(Santence) DOWNTO 1 DO

where StringNumber is a STRING which con-
tains a bunch of numbers and IntNumber is an
INTEGER variable. The conversion is accom-
plished by using a FOR loop to check the value of
each element in Data. We start at the left of the
string where the “ones” place is. By using the
ORD function, we can convert from characters
to their ordinal (ASCII) value. By subtracting
the ASCII value of the ‘0’ (zero) from the ASCII
value of the character we’re currently working
with, we get the INTEGER value of the number.
For example, let’s say Data contains ‘7326.” The
character we're looking at is a ‘6’ and its ASCII
value is 54. The ASCII value of ‘0’ is 48. 54 — 48 is
6 and we get the correct answer. This should work
even if your computer uses a numbering scheme
other than ASCII—and so the difference between
ORD(’6’) and ORD(’0’) will still be 6.

After we get our value, we multiply it by the
value in Tens and add the result to the value in
Number. At first, Tens is set to 1 and Number is
set to 0 so the value in Number becomes 6. Next
we multiply Tens by 10 to get ready for the char-
acter in the “tens” column. In our example, this
character is a ‘2’. We go through the same process

and multiply the resultant 2 by the 10 in Tens to
get 20. This is added to the value in Number (6),
and we get 26. We again multiply Tens by 10 to
get 100 in preparation for converting the charac-
ter in the ‘“hundreds’” column, This loop continues
until all characters have been converted and the
value in Number will be 7326. The conversion is
complete!

Of course, the creative reader will try out this
routine and pretend to be the backwards monkey.
The program may not bomb (unless you try to
enter a number larger than MAXINT—your Pas-

118

cal’s INTEGER limit) but it’s much too easy to
get inaccurate results. This is because we have not
added error checking and we haven’t allowed for
negative INTEGERs.

Adding Error Checking to Val

One solution would be to return a value of 0 if
there are any problems in the conversion. A more
practical solution is to have the conversion proce-
dure pass back an additional Boolean value which
is TRUE when the entry is legal and FALSE if it
isn’t. This value is called an error flag. Listing 9-8

Listing 9-7.

PROCEDURE Ual (Data : STRING;
UARR Mumber : INTEGER};
UAR Tens, Len, i INTEGER;
BEGIN
Tens = 13
Nuomber = 8;
Lan := LENGTH(Data);:
FOR i = Lern DOWNTO 1 DO (% Begin conversion to INTEGER %)
BEGIN
Number := Number + (ORD(Datalil} - ORDC'® 1)) % Tens;
Tens = Tens % 18; (% Increment decimal place #2
END;
END; (% Ugl %)
gives an example of a program with a modified Val 13A25 27.24 llegal characters
procedure which includes extensive error check- 8397680 39712 Out of range
ing.
Now you can turn your pet monkey loose and ——314 +-0 Too many signs
you’ll see your program survive his attack! Here null string

are a few entries which will be graciously rejected
by Val:

7

GEE, T GUESS T TYPED
A LETTER INSTEAD oF

A NUMBER!

REFK

iz

Here are some legal entfries:

LT DIDNT

119

Listing 9-8.
PROGRRAM UalDemo:

CONST MaxEntry = 32767 ;
Maxlength = 53

VAR IntString @ STRING:
IntNumber @ INTEGER;

Good : BOOLEAN;
PROCEDURE Ual (Data : STRING:
UAR Mumber : INTEGER;
UARR Ok : BOOQLEAM;
COMNST Plus = 13
Minus = -~1;

URR Sign, Len, Tens, i : INTEGER:;

BEGIN
Gk = TRUE; (% Initialize %
Tens = i;
Number = 0;
Sign = B;

Len := LENGTH(Data);

IF Len = © THEN Ok := FALSE (% Check for nuii string %)
ELSE IF Datafll = "+ THEN Sign := Plus (% Check for + aor - sign *}
ELSE IF Datalll = ° -’ THEN Sign = Minvus;
IF ARS{S5ign) = 1 THEN (% If + or - sign is present, #%
IF Len = 1 THEN Ok := FALSE (% check if length is greater #*3
ELSE (% than 1. If so, then delegte %)
BEGIN (% the sign from Data. #* 3
DELETE{Data, 1, 13J;
Len := LENGTH(Datal;
END;

IF (LENGTH(Data! >= MaxLength) AND (Data > MaxEntryl) THEN

Ok := FALSE; (*% Mumber is out of range %7
IF Ok THEN (% Begin conversion to INTEGER %)
FOR i1 := Lan DOWNTO 1 DO
IF (Doatalil < '@)} OR (Datalil > °9) THEN Ok := FALSE
ELSE {% Character is valid number %)
BEGIN
Number := Number + (ORD{(Datalil) - ORD(8 1) % Tens;
Tens = Tens % 14; (% Increment decimal place %)
END;
IF Sign <> @ THEN Mumber := Number % Sign;: (% Ad_just sign if negative *1

EMD; (% Ual %)
120

BEGIN (% Main Program #)
PAGE{ QUTRUT 33

REPEAT

GATOXY(B,51);

WRITEC(Entar an integer: ');
REARDLN(IntString J;

VAL IntString, IntNumber, Good);

UNTIL Good:

WRITELM(Ualid integer: ', IntNumber);
END.

(% UglDemo %)

+-39 ~1189 0 467

Let’s go through this procedure step by step:

1.
2,

Constants and variables initialized.

Check for sign in the first STRING position.
Before we can do this, we must check to see
if there s a first position—because accessing
Data[1], if we are working with a null string,
would yield a run time error. If the length of
Data is 0 we set our error flag Ok to FALSE.
Otherwise, set the variable Sign to the value
in Plus or Minus depending on what the sign
is. We are using the constants Plus and
Minus for added clarity.

Delete the sign from Data—if the value now
in Sign is 1 or —1, we know there is a sign
character to be deleted from the string.
However, if the length of Data is 1, we know
that all there is in our string is a sign, so
we set Ok to FALSE. Otherwise, we delete
the sign and set Len to the new string
length.

. Check the range of Data. Before doing the

actual conversion, we must check to see if
the value in Data is larger than MAXINT
to prevent an overflow error. We can accom-
plish this by making sure no more than 5
characters (the number of characters in
MaxEntry, a STRING representation of
MAXINT) were entered, and also making
sure these 5 characters don’t represent a
value greater than MAXINT. When checking
to see if one STRING is “greater” than an-
other, the ordinal values are compared on
a character by character basis. This means
that ‘99’ is considered to be greater than

121

(% | pop to accept a valid integer *}

‘10000000’ because when comparing the first
characters of each, the ‘99’ wins. For now,
we are setting the value of MaxEntry by
hand (see the CONST section of this pro-
gram). Again we set Ok to FALSE if we
find that Data is out of range. We don’t have
to check for the minimum range (—32767)
because we’ve already chopped off the nega-
tive sign from Data (if there was one), mak-
ing it look like a positive number.

5. Begin actual conversion. If Ok is still TRUE
(no errors so far) we now begin our conver-
sion loop. This time, however, we check the
validity of each character before converting
it to a number. If the character is either less
than ‘0’ or greater than ‘9’, it must be a non-
numeric ASCII character so we set Ok to
FALSE. If our character has survived all
these rigorous tests, it is ready to graduate
to INTEGER-hood!

6. Fix the sign. The final step is to give our
newly created INTEGER the Sign of its heri-
tage as a STRING. If Sign does not contain
a 0, we multiply our Number by Sign and the
transformation is complete.

There is no way that an illegal STRING can
make it through all the tests without being “found
out.” The value in Ok (which is passed as a vari-
able parameter along with Number) will give it
away. All you have to do is check the value in the
actual parameter (Good in ValDemo) for the
stamp of approval—a TRUE—Dbefore you use the
value in IntNumber. If Good is FALSE, have the
user re-enter the STRING as we do in our ex-
ample.

Listing 9-9.

PROGRAM IntConwvert;

VAR MaxEntry STRING;
PROCEDURE IntStr(Numbear : INTEGER;
UAR OutString @ STRING);
CONST Minus = ' -3
UAR Mum INTEGER;
Space, Sign STRING:
BEGIN
OutString = "7 ; (% Set to null *)
Space =7 0y (% Sot to one space %)
Sign t= Y7y (% Set to null %)
IFf Mumber ¢ B THEN (# Check for negative number %)
BEGIN
Sign = Minus;
Number = ABS(Number); (% Convert to positive number %13
END;
REPEART
Mum = Number - ({(Number DIU iB) % 1RA); (% Iscliate last digit #3

OutString

OutStringll]

Numbear Number DIV 18:
UMTIL Number = 8;

THEN
CutString,

IF Sign = Minus
INSERT(Minus,
(% IntStr %)

13
END;

BEGIN (% Main Program %}
IntStr{MAXINT, MaxEntry)d;
WRITELN(MaxEntryl;

eMB. (% IntConuvert *%)

Converting INTEGERs Into STRINGs

We will now go in the other direction. This next
program in Listing 9-9, IntConvert, has a pro-
cedure which will convert an INTEGER to a
STRING.

We are using this procedure to convert the MAX-
INT value to the STRING MaxEntry which can
then be used in our Val procedure. On execution,
this program will print out the MAXINT value as
a STRING. For an Apple II it will look like this:

32767

:= CONCAT(Space, CuiString);
:= CHR(MNum + ORDC' 8 });

122

(* Opan siot for CHAR #)
(% Convert MNum to CHRR #)
(% Prepare for next digit %)

(¥ Replace minus sign #%)}

Now for the explanation. First of all, there is no
error checking in procedure IntStr. This is be-
cause no errors are possible when converting from
an INTEGER to a STRING. Regardless of what
value is passed to the actual parameter Number,
this procedure will produce an accurate result.
Starting at the top:

1. Initialize the variables. Set OutString to null,
Space to one space.

2. Check for minus sign. If Number is negative,
Sign is set to a minus sign, then Number is
changed to a positive value.

3. Begin the conversion. We again want to start

at the right with the ones’ column. The plan
is to first isolate the right-most digit and
store it in Num:
a. DIVide Number by 10 to eliminate the
right-most digit. Using the value of
MAXINT we get:

32767 DIV 10 = 3276

b. Multiply the result by 10 to create a
sort of “filter”:

3276 * 10 = 32760

¢. Subtract this result from Number
(push the value of Number through
the filter) :

32767 — 32760 = 7

4. Initialize OutString. Add a space to the left

side of OutString. Since OutString was null
before, now it holds one space.

5. Place digit into OutString. We calculate the

ASCII value of ‘T’ by adding Num to the
ASCII value of ‘0’:

7 + 48 = b5

then convert this ASCII code to the corre-
sponding character using the CHR function.
We then make this character the first element
of OutString. Why did we choose this some-
what roundabout method? Since CHR pro-
duces a CHAR type value, we had to match
it with the same type on the left side of the
expression. The elements of a STRING are
also CHARs. But before we could do this,
we had to create a “slot” to drop the char-
acter into. This was done in the previous step
(Step 4). If we hadn’t carried out Step 4
first, we would have received a run-time er-
ror—accessing a nonexistent element of a
STRING. You may wonder why we couldn’t
combine steps 4 and 5 into the statement:

OutString := CONCAT(CHR(Num -4 ORD('0"), OutString);

We can’t do this because CONCAT only
works with STRINGs, and, as we said be-
fore, CHR returns a CHAR type.

. Knock off right digit. Now that we have con-
verted the first digit, we can throw it away
by dividing the value of Number by 10 and
storing the result back in Number:

32767 DIV 10 = 3276

123

7. Check to see if finished. If Number has been
reduced to nothingness (to 0), the conver-
sion is complete. (DIViding a number less
than 10 by 10 yields a 0.) Otherwise, go back
to step 3.

8. Insert sign. If the original Number was neg-
ative, we must not deprive OutString of
carrying on the tradition. So we INSERT
the minus sign into the first position of Out-
String.

STR—Instant Number String

Now that you fully understand how this proce-
dure works, we have to tell you that UCSD Pascal
(as well as some other Pascals) has a built-in
procedure to accomplish the same thing. It is
called STR and it is used with the same syntax
as our IntStr procedure:

STR(Number, IntString);

By creating an existing procedure from scratch,
you will now have a better understanding of how
the creators of Pascal did it.

For those of you who are wondering whether
Pascal also has a built-in function to convert a
STRING to an INTEGER (like BASIC’s VAL
function), sorry it doesn’t.

Uncle Pascal says: Now that you
can convert from STRINGs to IN-
TEGERs and from INTEGERs to
STRINGSs, how about trying it with
lead and gold!

QUIZ—STRINGS

True or False
1. The maximum length to a STRING is 255 characters.

2. Accessing a nonexistent element of a STRING will yield
a run-time error.

3. Using LENGTH on a null string yields a run-time error.
4. The STRING intrinsic POS returns the value FALSE if
no match is found.

5. You will get a run-time error if you use parameters for
the STRING intrinsics which are beyond the size of the
STRING.

USING LONG INTEGERS
FOR INCREASED ACCURACY

A number of times throughout this book we
have said that all kinds of wonderful things could
be accomplished with LONG INTEGERs. This is
the section of the book where we fulfill all of your
expectations.

What Are LONG INTEGERs?

LONG INTEGERS are a special data type which
is not part of standard Pascal. This type was
added to UCSD Pascal (and certain other Pas-
cals) to provide the level of accuracy which is
missing in REALSs. To declare a LONG INTE-
GER, just place a length attribute after the word
INTEGER.

VAR BigNumber : INTEGER][15];

UCSD Pascal treats LONG INTEGERs very much
like ordinary INTEGERs. You can perform the
four basic arithmetic operations on them (+ —
* DIV) and you can use the relational operators
(<, >, =, >=, <=, <>). But LONG INTEGERs
are special with some special features and restric-
tions. They can be up to 36 digits in length, the
operator MOD can’t be used with them, and since
they are a different type than INTEGERSs, you
must be careful when working with LONG INTE-
GERs and normal INTEGERs together. When
mixing INTEGERs and LONG INTEGERs in
arithmetic expressions, the result is always a
LONG. A LONG can be assigned an INTEGER
value:

LongValue := IntValue;

but to go in the other direction you must use the
TRUNC function (also used to convert REALs
to INTEGERs) :

IntValue := TRUNC(LongValue);

However, if the LONG in this expression is
greater than MAXINT, you will get an overflow
error.

LONGS can also be converted to STRINGs us-
ing the STR procedure:

STR(LongNumber, LongString);

Even though LONGs can be very large numbers,
you still must guard against overflow. If a LONG
becomes larger than its declared length (or
greater than 36 digits), you will get a run-time
error.

Using LONGSs in Place of REALs

Using LONGS merely as very big INTEGERs
is extremely simple and straightforward—you
just do it. But using LONGs in place of REALs
can become somewhat more complex. This is be-
cause you have to keep track of an imaginary
decimal point (since you can’t really insert one

124

into a LONG). We have come up with a few sim-
ple rules to help you handle this problem. Con-
sider the following:

2.25

The numbers are correct but we haven’t inserted
the decimal point yet. We were taught in school to
count the total number of digits to the right of
the decimal point in the two numbers which are
multiplied together. Each number has two deci-
mal digits so 2 + 2 = 4, This means that our an-
swer must have 4 decimal places in it:

5.0625

What if we wanted to cube 2.25 instead of square
it? The product of 2.25 * 2.25 * 2.25 will have 6
decimal places (11.390625). If we continue to mul-
tiply the products by 2.25, we could eventually end
up with a number with a very large number of
digits to the right of the decimal point. 2.25'5
would have 30 decimal places!

2.25'5 = 191751.059232884086668491363525390625

What if the numbers we were multiplying to-
gether had 8 decimal places!! You can see that
even with LONG INTEGERs we could rapidly
run into an overflow. The solution is to round off
the number of decimal places which were added
on after each successive multiplication operation:

2.25 * 2,25 = 5.0625 round to 5.06
5.06 * 2.25 = 11.3850 round to 11.39
11.39 x 2.25 = 25.6275 round to 25.63 . .. etc.

By following this technique, we can keep the num-
ber of decimal places under control and also keep
track of where the imaginary decimal point is
(always two places from the right). The choice to
round to two places is an arbitrary one—we could
just as easily have chosen to round to eight deci-
mal places. So much for the background material;
here comes a concrete example.

The Loan Payment Program Revisited

What follows is a souped up version of our Loan
Payment Program (Listings 5-7, 8-9) which uses
error checking, the accuracy of LONG INTE-
GERs, and fancy output. We will explain the pro-
gram to you in bite-sized chunks, then print the
entire program at the end of this chapter (List-
ing 9-11). Don’t become overwhelmed by its size—

it really isn’t difficult to understand. Also, don’t
feel obligated to figure it all out—take the major
ideas (error checking and use of LONG INTE-
GERs) and try using them in your programs.

An Querview of the Program—We've categor-
ized the functions of the program into three main
parts:

1. Entry of the data and conversion to LONGs
—we enter all numbers as STRINGs, and
then use a modified Val procedure to check
for illegal numbers and convert the STRINGs
to LONGs or INTEGERs (two of each are
entered).

2. Calculations—this section is very similar to
the calculation section of our earlier version.
The only difference is that we are dealing
with LONGs and have to make sure we don’t
misplace our imaginary decimal point.

3. Output—the final LONG values are rounded
off, converted to STRINGs, and made to look
pretty by adding commas.

Before we explain this program further let’s
use it on a couple of examples. For the first ex-
ample, we will use the earlier data for purchasing
a $100,000.00 home with a 20% downpayment.
This means financing $80,000.00 for 30 years at
15%:

** LOAN PAYMENT **

Enter the following information
(You may use commas in your numbers):

Amount of loan: 80,000.00
Annual interest (%): l§_
Payments per year 12
Term in years: 30

Regular payment =
$ 1,011.55

Total interest on loan =
$ 284,159.73

Would you like to calculate another? Y

You’ll notice that we used commas both during
entry and output to make reading large numbers
easier. We also obtained a much more accurate
figure on the total interest on the loan. Let’s put
our program to a bigger test. As you are well
aware, we Americans have to pay taxes to the
U.S. Government. In 1979, we paid a total of
$370.5 billion! Let’s not think of this as throw-

125

ing away our money, let’s think of it as a Loan
to Uncle Sam (no relation to Uncle Pascal). If it’s
a loan, we need to get payments back in order
for this loan to be paid off. Since we pay taxes
every year, the Term of the loan will be one year.
And since we're not greedy, we will only charge
Uncle Sam what we would get if we could place
the money in a standard passbook account at
5.25% interest. One payment per month isn’t
enough, though, so let’s make it one payment per
day. Let’s see how much we (as taxpaying citi-
zens) should be receiving back from Uncle Sam
in the form of services, if not money.

** LOAN PAYMENT **

Enter the following information
(You may use commas in your numbers):

Amount of loan: 370,500,000,000.00
Annual interest (%): ﬁ

Payments per year: 365

Term in years: 1

Regular payment =
$ 1,041,978,387.69

Total interest on Joan =
$ 9,822,111,506.85

Would you like to calculate another? N

That's all folks . . . BYE

Now let’s take the regular payment and divide
it by the number of Americans (about 227 mil-
lion) and we get approximately $4.59 per Ameri-
can per day! Oh, if only it were that simple!!

How It Works

So much for our little diversion, let’s see how
this program works.

The Constants-—We'll start at the top of the pro-
gram (Listing 9-10A) with the list of constants.

Accuracy is set to the maximum number of dig-
its we will allow to remain to the right of the deci-
mal point. In our previous demonstration in which
we multiplied 2.25 times itself, and then rounded
back to two places, we could say we had an Accu-
racy of 2. An Accuracy of 8 means we will be
rounding off to 8 decimal places. Since we are
working in dollars and cents, this will give us
more than enough accuracy since the final answer
will be further rounded down to 2 decimal places
(cents).

Listing 9-10A.

PROGREAM Loan4d:

CONST Accuracy = 8; (% Numker of decimal piaces ussed during calcuiagtions *
Screenbidth = 48;
MaxEntry = 28; (% Maximum al lowable digits in this program’s LONGs %)
{ongValue = TRUE;
IntUaive = FALSE;
TYPE LONG = INTEGERL3EI; (% Declare now TYPE so LONGs can be used as
parameters. Up to 36 digits of accuracy #3
VAR Principal, AnnualInterest,
RegularPayment, TotallInterest, One LONG;
Payments=PerYear, TermInYears, UVaertPos @ INTEGER;
Yesho CHAR:

ScreenWidth is set to the width of your com-
puter’s sereen. This value is used in the Center
procedure which we introduced earlier in this
chapter.

MaxEntry is the maximum number of digits we
will allow the user to enter for a number in this
program. With the formulas we use in this pro-
gram, entering a number of more than 20 digits
will invariably lead to overflow errors. Although,
the input and conversion routines have been pro-
tected from overflows, the calculation section of
this program has not. If the user enters unrealis-
tically large numbers for all entries or zeroes for
certain entries, the program will bomb when it
tries calculating with these numbers. The next
two Boolean constants will be used as flags—we
will cover them later on.

A New Data Type—After the constant declara-
tion section (Listing 9-10A) there is a line that is
unfamiliar to you. Here it is again:

TYPE LONG = INTEGER[36];

The right side of this line should look familiar—
it shows that we will be using 86 digit LONG
INTEGERs. This line says that we are now cre-
ating a new data type which, in this case, we will
call LONG, and it will equal a 36 digit LONG
INTEGER (we will be covering new data TYPEg
in the next chapter). We had to do this because
of an idiosynerasy in UCSD Pascal. TRUNC and
STR are the only two routines which will accept
LONG INTEGERs as parameters. We would get
a syntax error if we attempted to declare a LONG
INTEGER in a parameter list for the procedures
of this program. This is because in a parameter
list, the identifier (variable name) is bound to a
type name (e.g., CHAR, INTEGER, REAL, etc.).
However, declarations such as INTEGER[36] or
STRING[40] are not type names, they are type

126

descriptions. So, to assign a name to a type de-
scription we use the TYPE declaration, in this
case LONG. We can now use this “new’” type when
we declare variables and parameters throughout
the program. An example of this follows in the
VAR list for the program block (Listing 9-10A).
All of the variables which were declared as REALSs
in the original versions of this program are now
declared as LONGs.

Stepping Through the Logic

Let’s follow this program through a run. Look
at the Main Program section (Listing 9-10B).

The Power Procedure—The first thing we do is
to initialize the variable One to 104ccwr2ey yging
a modified Power procedure (from Listing 8-7).
You’ll find this procedure in Listing 9-10C and
again near the beginning of the complete program
listing at the end of this chapter. We had to con-
vert Power from a function to a procedure be-
cause a function can’t return a LONG as its re-
sult. We also reverted back to the version which
only calculated positive exponents—raising an in-
teger to a negative exponent will cause a rapid
loss of accuracy. Otherwise, this procedure is very
much like our earlier Power function. We are just
using LONGs in place of REALs. The value in
One (10%) is what a 1 would look like if the imag-
inary decimal was in position. Since we are work-
ing with 8 decimal places of Accuracy, if we were
using REALs rather than LONGs, the number
would be written as:

1.00000000
Remove the decimal point and we have:

100000000 or 108 or 1QAccuracy

Listing 9-10B.

BEGIN (% Main Program %)

Power(18, Accuracy, One); (% Compute the number "One” by raising 18
to the Accuracy power (18 T Accuracy) %)

’ »

YasNo := 5

REPEAT
GetData:
Calculate;
PrintAnswer;
GOTOXY(B,19);

(% Initialize to one space %)

WRITEC(Would you like to calculate another? *);

READ{ YesNo };

UNTIL (YesNo = "N)} OR (YesNo = 'n’ }

GOTOXY(@,22);
Canter(’ That’’s ail folks...BYE);
END. (% Loan4 *)

We use this value in place of the number 1 when
we want to combine a 1 with a LONG. If this is
what a 1 looks like, a 0.05 would look like:

5000000

Converting a number to what we will call an “ad-
justed LONG” can be accomplished by multiply-
ing the number by the variable One:

0.05 % One = 5000000

21.0031 x One = 2100310000

Getting the Data—Let’s go on. After initializ-
ing YesNo to one space, the GetData procedure is
called and we enter the input and conversion por-
tion of this program (Listing 9-10D). Look at
GetData.

After initializing VertPos and setting up the

screen (using two recycled procedures, Clear-
Screen and Center) the user is prompted for the
amount of the loan. Rather than using READLNSs
to enter numbers, we are using two custom pro-
cedures, ReadLong to enter LONGs and ReadInt
to enter INTEGERs. Look at ReadLong (Listing
9-10E) first.

This is the ‘“housekeeping” procedure that posi-
tions the cursor (now you see where VertPos is
used), and accepts a STRING from the user. Next
comes the conversion to a LONG using the Val
procedure. You’ll notice that we are passing an
extra parameter to Val called LongValue. This is
a Boolean constant (declared at the beginning of
the program) with a value of TRUE. Since both
ReadLong and ReadInt call Val, we needed a way
to let Val know whether the STRING is to be
converted to a LONG or an INTEGER. This Bool-
ean parameter is the means to do this. The only

Listing 9-10C.

PROCEDURE Power{x LONG:

y : INTEGER;

UAR Result : LONG);

(% Procedure which raises % to the y pouwer (xTul) y

must be greater than 3.

fi procedure must be used

bacause funcitions can’t produce LONGs as a result. %)

VAR i ¢ INTEGER:

BEGIN
Result = 13
FOR i := 1 TO y DO
Result = Result * x;

ENDs; (% Pouwer *%)

Listing 9-10D.
PROCEDURE GeiDatas

BEGIN
UartPos = b; (% Sat vertical cursor position %)
ClearScreen;
Center(’ % LOAN PAYMENT %%’ J);
WRITELN;
WRITELM;
WRITELNC(Enter the following information’);
WRITELMNCO {You may use commas in your numbersl):’)i

WRITELN;
WRITE(® Amount of loan:’ J);
Readlongi{Principal }; (#% Call routine to accept data #)

WRITEC’ Annual interast (%):’ J);
Readlong(fAnnual Interest);
WRITEC(" Payments per year:’ J);
ReadInt(PaymentsPerYear J1;
WRITE(’ Term in years:’ J;
ReadInt{(TermInYears);
END; (% GetData #)
way to exit ReadLong is to enter a valid LONG, (also in Listing 9-10E), is called to clear the en-

then the value sent back to Good will be TRUE. try and reposition the cursor. When Good is
If Good is FALSE, another procedure, ClrLine TRUE, VertPos is incremented by one in prepara-

Listing 9-10E.

PROCEDURE ClrLines
(% Erase the contents of line UertPos to the right of
horizontal position 22, reposition cursor for next try. %)

BEGIN
GOTOXY(22,VertPos };
WRITELNC ~ :38);
GOTOXY(22,VertPos);

END; (% ClrLine %)

PROCEDURE ReadlLong(UAR LongNumber : LONG);
{(* Read a STRIMNG and send it to Val to be converted

tc a LONG until a valid LOMG is returned. *)
UAR InpString : STRING;
Good : BOOLEAN:
BEGIN
REPEAT

GOTOXY(22,VertPos);
READLM(InpStringJl;
Yal (InpString, LongMNumber, LongValue, Good);
IF NOT Good THEN ClrlLine;
UNTIL Good;
VertPos := UertPos + 1; (# Increment vertical cursor position %)
END;: (% Readlong #)

128

Listing 9-10F.

PROCEDURE ReadInt(VUAR IntNumber
(% Road a STRING and
to a INTEGER until

sand it to Ual

VAR InpSiring STRING;
LongNumber LONG;
Good BOOLEAN;
BEGIN
REPEAT

GOTOXY(22,UertPos J;

READLNCInpStringJ);

Val (InpString, LongNumber,

IF NOT Good THEN Clrline;
UMTIL Good;

IntNumber := TRUNC(LongMumber);
UartPos := UertPos + 1;
END;: (% ReadInt *1

tion for the next entry. Now look at ReadInt
(Listing 9-10F).

It is very similar to ReadLong. There are two
main differences:

1. It sends the Boolean constant IntValue (set
to FALSE) to Val. This lets Val know that
the entered STRING is to be converted to
an INTEGER.

2. The LONG received from Val is converted to
an INTEGER using TRUNC.

Converting to Numbers With Val—Now look at
procedure Val (Listing 9-10G). This is the long-
est procedure in the program (also the longest
single block procedure in this book) and it does
the most difficult job—trying to second guess a
backwards monkey who’s in a hurry isn’t easy!

You'll recognize many sections from the version
of Val which we used to convert from STRINGs
to INTEGERs (Listing 9-8). In addition to main-
taining most of the previous features, this version
also has to watch for decimal points and shift the
size of the final number accordingly. Let’s follow
the steps:

1. Initialize variables. We have two new vari-
ables—DecimalPlaces will hold the number
of decimal places the entered “number’ has.
FoundDecimal is a flag which will be set to
TRUE when the first decimal point is en-
countered during the conversion process.

2. Delete commas from entry. To make it
easier to enter large numbers, we set the
program up so the user could use commas
if desired. Therefore, we must check for and

IntValue,

(% Increment vertical

129

INTEGER);
te be converted
a valid INTEGER is returned. %)

Good)

LONG to INTEGER %
cursor position %3}

{# Convert

delete all commas. We are using a variation
of the NoSpace program (Listing 9-4)
which deleted all of the spaces from a sen-
tence. When our STRING Data exits this
WHILE loop, it will be free of commas.

3. Sign check. In this section we check for the
presence of a plus (+) or minus (—) sign
in the STRING. Before we reference the
first element, we check to see if there is a
first element. You already know what hap-
pens if we try to access a nonexistent
STRING element! If Data survives this
first test, we check for the sign. This sec-
tion was taken from the earlier version of
Val.

4. Delete sign. This section was also from the
old Val. If there is a sign in the STRING,
we check to make sure there’s something
else there too. If the STRING length isn’t
equal to one, we delete the first character
(the sign) and reset Len to the new length
of Data.

5. STRING set to decimal point. Check to see
if all that is left in the STRING is the deci-
mal point. If so, set Ok to FALSE.

6. Check length of Data, If the STRING
length is greater than the value in Max-
Entry (20) we set Ok to FALSE. The
chances are quite high that a number with
more than 20 digits will cause an overflow
error during the calculation stage.

7. Convert to number. This is the section
which does the actual conversion. The first
part is stolen from our old Val procedure.
What we added was a section that holds the

Listing 9-10G.
PROCEDURE WUal (Data : STRING;
UAR Number : LONG:
LongFlag : BOOLEAN;
UAR Ok : BOOLEAN);
CONST Plus = 1;
Minus = -1;
VAR Sign, Len, i,
Decimal Places @ INTEGER:
Tens, Offset : LONG;
FoundDecimal : BOOLEAN;
BEGIN
Ok := TRUE:; (% Initialize %)
Tens = 1;
Number := 8;
Sign := 8;

t= B3

:= FALSE;

Bacimal Places
FoundDecimal

WHILE POSC’,”, Data) > 8 DO

DELETE(Data, POS(’,", Data), 1); (% Deletz all commas from Data #3
Len := LENGTH(Data)l;
IF Len = B THEN Ok := FALSE (% Check for null string %)
FLSE IF Dataglll = '+ THEN Sign := Plus (% Check for + or - sign #)
ELSE IF Datalll = * - THEN Signh := Minus;
IF ABS(Sign} = 1 THEN (% If + or - sign is present, %)
IF Len = 1 THEMN Ok := FALSE (% check if length is greater %]
ELSE (# than 1. If =s0, then delete %1}
BEGIN (% the sign from Data. * 2
DELETE(Data, 1, 112;
Len = LENGTH(Datal);
END;
IF Data = " . THEN Ok := FALSE; (% Another invalid entry *3
IF Len > MaxEntry THEN Qk = FALSE; (% Number is out of range *)
IF Ok THEN (% Begin conversion to LONG #)
FOR i := Len DOWNTO 1 DO
BEGIN
IF (Datalil < '8) OR (Datalil > °98) THEN Ok := FALSE
ELSE (% Character is valid number #)
BEGIN
Mumber := Number + (ORD{(Datalil) - ORDC @ }) % Tens;
Tans := Tens % 18; (% Increment decimal place %)
END;
IF LongFlag AND (Datafil = ° .’) AND NOT FoundDecimal THEN
BEGIN (# Firet decimal found in LONG #%)
DecimalPlaces = Len - i3
Ok := TRUE;
foundDecimal := TRUE;
END;

END; (% FOR Loop #)

130

IF

IF

(%

IF

END;

NOT LongFlag AND (Number > MAXINT) THEN Ok

Sign <> B THEN Number

If LONG then make it
imaginary decimal
a total of Acuracy decimal
LongFlag THENM
(% If the number of decimal
IF DecimaiPlaces » Accuracy THEN
Roundoff(Mumbar, DecimalPlaces

into an

:= Number % Sign;

:= FALSE;

(% Ad just sign if negative *)

"ad justed LONG" by moving the
ouer the right number of spaces to give it
places.

*)

places exceads Accuracy then Roundoff *)

- RAccuracy?

ELSE
BEGIN
Power (18, Accuracy - DecimalPlaces, Offsetl;
Number := Number % Offset; {(# Move decimal over the * 7
END; (% correct number of places %}

(% Ual %)

number of “decimal places” there are in the
variable Data. Here are the steps:

a, Check to see if this is a LONG (Long-
Flag will hold the TRUE from Read-
Long) and if the character we’re look-
ing at is a decimal point (.) and make
sure this is the first decimal point we
have encountered (FoundDecimal is
still set to FALSE). If all these con-
ditions are met, then continue.

b. The number of decimal places is calcu-
lated by subtracting i from the length
of Data. Store this in DecimalPlaces.

c. Set Ok back to TRUE. It was set to
FALSE when it was discovered that
the current character wasn’t a nu-
meric character.

d. Set the FoundDecimal flag to TRUE.
This flag will protect the program
from the dot-happy user who enters

131

more than one decimal point. Only the
first one counts.

8. Check value of INTEGER. If we are con-

verting an INTEGER and not a LONG, we
need to make sure the value of Number isn’t
greater than MAXINT. If it is we will get
an overflow error later on in ReadInt when
we try to convert the LONG down to an
INTEGER with TRUNC.

. Put back the sign. We next stick the sign

back on the Number if it should have one.
Of course, if it’s a positive number, the sign
remains invisible. This step is somewhat
ludicrous for this program since it’s un-
likely anyone will have to pay back a loan
with negative dollars! But if you want to
use this entire procedure in another appli-
cation, you may need to convert to negative
numbers.

10. Create “Adjusted LONG.” The final step in

Val is necessary for LONGs only. We need
to make sure that the number of digits to
the right of the decimal point in our num-
ber is consistent with all other LONGs in
this program. (We explain why shortly.)
As said before, this number is stored in the
constant Accuracy and its value is 8. There
are two possibilities here, either Number
has 8 or more ‘“decimal places” already (in
which case we must chop some off), or it
doesn’t have enough decimal places (we
must add some) :

a. To chop off the extra decimal places,
we use the Roundoff procedure (List-
ing 9-10H). The second parameter in
Roundoff is the number of places to
remove. We arrive at this number by
subtracting Accuracy from Decimal-
Places. For example, if our number
had 11 decimal places and we only
want 8 (Accuracy = 8) we subtract
8 from 11 and get 3 (11 — 8 = 3) so
3 decimal places are chopped off and
we are left with 8. If there are already

8 places, Roundoff does nothing with
Number.

b. If Number doesn’t have enough deci-
mal places (less than Accuracy), all
we have to do is add the correct num-
ber of zeroes to the end of Number to
make up the difference. We find how
many places we are short (Accuracy
— DecimalPlaces) and use Power to
return Offset (10 raised to the num-
ber of places short). Finally, by mul-
tiplying Number by Offset, we get our
Adjusted LONG.

So when we leave Val, we will either have a LONG
with Accuracy decimal places, a value within the
INTEGER range, or an error flag which says to
do it again,

By The Way . ..
Adjusted LONGs

Why make all LONGs consistent? We want to make
all of the LONGs consistent with each other because
this is easier than trying to keep track of where the

~ AR
i /R P
—ZiN._ 2 P

NORMALIZER

AL T T T I T T T T VT T T VT T LY

132

decimal is with each number using additional vari-
ables or flags or whatever. When working with
REALs, all this is unnecessary—if we add 12.12134
to 1000.50, the decimals automatically line up:
12.12134
-+1000.50

1012.62134

But what if we erase the decimals? The computer
would add them together like this:

1212134
+ 100050
1312184

and the result would bear no relationship to the
truth.

But what if we adjust the numbers so they will all
have 8 decimal places:

12.12134000 - 1212134000
1000.50000000 - 4100050000000

101262134000
Now let’s replace the decimal point 8 places from
the right:
1012.62134000
And our result is accurate! So, we don’t have to
worry about where the decimal point is for a given
LONG once the LONG has been “adjusted” (some-

times called “normalized”) because we know it will
always be Accuracy places from the right.

Roundoff—Let’s delve a little deeper to see how
the Roundoff procedure (Listing 9-10H) accom-
plishes its task.

Here are the steps:

1. Initialize Up to 0.

2. Create the divisor. Dv is created by raising
10 to the Places power. Places is the value
sent by Val which indicates how many deci-
mal places to lop off. If Places received a 3,
Dv would be set to 103 or 1000.

3. Check for rounding. Isolate the most signifi-
cant digit which will be lost when the num-
ber is rounded. That is, if we wanted to knock
off 3 places from 593621 we would get 593.
However, by checking the left-most of the
digits which are truncated, the 6 in this case,
we can tell whether we should round up. To
isolate the number we plug our values into
the expression:

LastDigit := (Number DIV (Dv DIV 10)) — ((Number
DIV Dv) x 10);

This expression reduces to:

5936 — 5930 = 6

4. Save rounding factor. If LastDigit is greater
than or equal to 5, we must round up so Up is
set to 1. If LastPlace is less than or equal to
—5, Up is set to —1.

5. Adjust Number. Finally we DIVide Number
by Dv to adjust it to the consistent size and
add Up to it for rounding.

Listing 9-10H.

PROCEDURE Roundoff(UAR Number :
Places :

LONG;

IMNTEGER);

(% Procedure to round off a LONG INTEGER by Places positions %)

vAR Up IMTEGER:
Du, LastDigit LONG;
BEGIN
Up = B;
Power (18, Places, Duv)}; (% Croate Du = 18 1T Places %)
(* Isolate the imaginary decimal place which
will be lost when Number is adjusted. *)
LastDigit := (Number DIV (Dv DIV 181)) - ((Number DIU Du) % 18);
(#% Next zet Up = 1 if number needs to be rounded up
or set Up := -1 if number needs to be rounded down %)
IF LastDigit >= 5 THEN Up :=
ELSE IF LastDigit <= -5 THEN Up := -1;
(% Divide number by Du, add Up %)}
Number := Number DIV Dv + Up; (% to correctly round Number. #)
EMND; (% Roundoff %3

133

Listing 9-101.

PROCEDURE Calculate;

VAR Numerator, Denominagtor,
InterestPerPeriod, Temp : LONG;
NumberOfPayments : INTEGER;

BEGIN (% Caiculata %]
GOTOXY(13,19);
WRITEC' Calculating...” J;

InterestPerPeriod :
NumberOfPayments

(% Twg

the decimal
Mumarator = Principal
Roundoff{Numerator, Accuracyl;

"ad justed LONGs® wili
place back in

PowerMod{One + InterestPerPeriod,
Denominator := One - Temp;

be multiplied together:
tine by rounding off Accuracy places.
InterestPerPeriod;

-NumberOfPayments,

{Annual Interest DIV 188) DIV PaymentsPerYear:;
PaymentsPerYear % TermlnYears;

we must bring
*)

Temp);

(% One "adjusted LONG" wil! be divided by another so we must allow
for the cancellatiocn of significant places by muitiplying by
"One" first. "One" is egual to 1B 1T Accuracy *)

Regul arPayment := One * Numerator DIV Denominator;:

Total Interest := RegularPayment % NumberOfPayments - Principal;

END: (% Calculate %}

Phew!! All that just to enter four numbers!
Well, the numbers are now stored in their proper
variables and we are ready to perform the calcu-
lations on them.

The Calculate Procedure—This procedure (List-

ing 9-101) is fundamentally the same one that we
used in the previous Loan programs.
As we saw earlier, adding and subtracting “ad-
justed LONGs” (again, LONGs with a uniform
number of imaginary decimal places) is straight-
forward—ijust do it. But multiplying and dividing
leads to a slight complication. Multiplying two ad-
justed LONGs together will cause a doubling of
the number of imaginary decimal places. So, when
multiplying two adjusted LONGs together always
round the result back down to Accuracy places af-
ter every multiplication.

When dividing two adjusted LONGs together,
the opposite happens—we lose Accuracy places.
All the extra places we so carefully added cancel
each other out:

500000000 _ 5 _
700000000 ~ 7
We obviously can’t have this happen and we can’t
recover the lost digits by multiplying by 1QAccuracy
after the division takes place (10Accuracy % (= ()

0

134

so we multiply by 10Accuracy hefore the division
takes place! This way we retain our Accuracy
decimal places:

100000000 500000000 _ 50000000000000000

700000000 700000000
@9299@ = 71428571

When multiplying or dividing an adjusted LONG
by an INTEGER, there is no need for any correc-
tions—decimal places are neither lost nor gained.
However, we can’t add or subtract INTEGERs
and adjusted LONGs together unless the INTE-
GERs have been adjusted too.

During the calculations of this procedure, the
value 10QAccuraey jg stored in the variable One. We
can multiply LONGs which are to be divided by
each other by One before the division. We also
use One wherever a 1 is called for in our formula
since One is really an adjusted LONG with the
value of 1.

Now that you have the explanation, you will be
able to follow our actions. You’ll notice that we
printed the word ‘Calculating..” on the screen
when the calculations began—working with
LONGs is much slower than INTEGERs or

Listing 9-10J.

PROCEDURE PowerMod(x : LONG;
Y : INTEGER;
UAR Result @ LONG);

(*# Procedure which raises x to the y power (xTy) and adjusts

the imaginary decimal
with the Roundoff procedure.
in place of Power when our

by rounding off Accuracy places
This procedure must be used
“ad justed LONGs*®

are involued. %)

(% Ad just Resuit to *)

(% Accuracy places

*)

(% Check for base of B *%)

UAR i = INTEGER:;
BEGIN
Result := One:
IF y > B8 THEN
FCR i := 1 TO y DO
BEGIN
Result = Result % x;
Roundoff{Result, Accuracyl;
END
ELSE IF x = 8 THEN Result =8
ELSE
FOR i (= 1 to -y DO
Result := One % Result DIV x;
END; (# PowerMod *%?

REALs. If the values are very large or the num-
ber of payments is high, the user may have to
wait minutes rather than seconds. We don’t want
the user to think the poor computer died! (Per-
haps we could interface the computer to a MU-
ZAK™ machine and have it melodiously fill the
calculating time.)

In order to do the adjustments to the numbers
after multiplications, we had to break the formula
into sections and use some temporary variables
(Numerator, Denominator, Temp). Since we are
using the technique of successive multiplications
when raising a number to a power, we had to cre-
ate a new power procedure called PowerMod
(Listing 9-10J) which can handle our adjusted
LONGs. It also follows the rules above.

Output of the Results—We now are finally ready
to output the results. But we must first convert the
LONGs back to STRINGs so we can insert a deci-
mal point. Our old PrintAnswer procedure calls
an output procedure, WriteLong, which does this
plus more. Take a look at WriteLong (Listing
9-10K).

We'll go through the steps:

1. Round off the LONG so that it has only two
imaginary decimal places instead of Accu-
racy.

135

(* Increase decimal places prior to

division by multiplying Result by One %)

2. Convert the LONG to a STRING using the
intrinsic STR procedure.

3. Check for the presence of a minus sign. If it’s

there, set Sign to 1, otherwise set Sign to 0.

There is a possible rare occurrence which

may happen—if the number we are working

with is less than .10 (or ten cents) we must
manually insert a ’0’ so the upcoming decimal
point insertion routine will function prop-
erly. For example, if the LONG we are con-
verting was a 4, it will now be a ’4’, and af-

ter the ’0’ is inserted we will have *04’,

5. Insert the decimal point two places from the
right.

6. Insert commas if necessary. Commas are in-
serted every three places counting from the
decimal point and going to the left. Try
some values to see how this routine works.

7. Center and print our final STRING concate-
nated with a ’$’.

The last step in the Main Program section (List-
ing 9-10B) is to find out if the user wants to cal-
culate another loan payment. The user must press
‘N’ or ‘n’ to exit the program.

Learn by Example—Take your time going over
this program (Listing 9-11). Feel free to alter or
modify different sections of it to see what will hap-

Listing 9-10K.

PROCEDURE Wr itelong{(OutNumber

LONG 33
STRING and print

(* Convert our final LONG to a
UAR QutString : STRING;
i, Sign, Ln : INTEGER;
BEGIN
Roundoff(OutNumber, Rccuracy - 23¥; (%
STR(OutMumber, OutStringl; (%
IF QutStringll]l = - THEN Sign := 1
ELSE Sign := B;
IF LENGTH(OutString) - Sign = 1 THEN

INSERTC(@', OutString,

INSERTC(.7, QutS5tring,
Ln := LENGTH{(OutString)l;
FOR i = 1 TO (Ln
INSERTC(" ,’, OutString, Ln -
Center(CONCAT(' % ' ,0utStringl);
END; (% Writelong #)

PROCEDURE PrintRnswer;:

BEGIN
GOTOXY(8, 12);
Center(’ Regular payment =’ J);
Writelong{Regu!larPayment);
WRITELN;
Center(’ Total interest on
Writelong{(Total Interest};
END; (% PrintAnswer %)

s

pen. One of the best ways to learn a computer lan-
guage is to first examine how someone else solved
a problem and then see if you can do it differently.
Can you improve this program so that there is no
possible combination of entries which will lead to
an overflow condition? How about adding a bell
sound if an error is made during entry (printing
an ASCII 7 will ring the bell if your computer or
terminal has one). Make this program “yours”
by tearing it apart and putting it back together!

EXERCISES
Here are a few exercises you may do.*

* The “solutions” to these exercises are not included in
this book.

loan =");

LENGTH(OQutString ;s

LENGTH(GCutString) -

- 4 - Sign) DIV 3 DO
(i %= 3 +

136

it. %)

two decimal
to STRING

Round off to
Convert LONG

places *)
%*]

(% Check for minus sign %)

*)
*)

lass than
.!I

(% If
(% 18

is
insert a

answar
cents,

1); (% Insert decimal point

(% Insert commas in answer *)

2313

(% Add ¥ to answer and center %)

1. Write a procedure to convert all lower case letters to
upper case.

2. Write a procedure which will convert REAL numbers
to STRINGs and insert commas if necessary.

3. Write a procedure to convert STRINGs to REALs.

4. Write a procedure which checks for a leading space or
spaces in a STRING and deletes them.

QUIZ—LONG INTEGERS

True or False

1. All LONGs must be declared to have 36 digits.

2. When multiplying three numbers together, each with 7
decimal places, the product will have 14 decimal places.

3. When multiplying two adjusted LONGs together, you
must round off the extra “decimal places.”

4, When dividing two adjusted LONGs together, you must
add extra decimal places after the division.

Listing 9-11.

(k======= == %)
(# *)
(% Program Language: PASCAL *1]
(% Program Title: Loan Payment - version 4 *]
(% Subtitle: Introducing STRING entry, LONG *)
(% calculations, and STRING output. %)
(% *)
(% Author: David Fox *)
(* Program Summary: Calculates the regular payment %)
(% on a loan. *)
(% *)
($=====s======== == ==)

PROGRAM Loand;

CONST fccuracy = B3 (% Number of decimal piaces used during calculations %)
Screenlidth = 48;
MaxEntry = 28; (% Maximum allowable digits in this program’s LONGs *)
LongValue = TRUE:;
IntUalue = FALSE;

TYPE LONG = INTEGERC3B]1; (% Declare new TYPE so LONGs can be used as
parameters. Up to 36 digits of accuracy %)

UAR Principal, AnnualInterest,

RBagularPayment, TotalInterest, One : LONG:
PaymentsPerYear, TermInYears, VertPos : INTEGER;
YasNo : CHAR;

PROCEDURE ClearScreen;

BEGIN
PAGE(OUTPUT 33
END; (% ClearScreaen %)

PROCEDURE Center(Sentence : STRING);
(% Procedure to center a sentence on the screen #)
UAR Len : INTEGER:

BEGIN

Len := LENGTH(Sentence);

WRITELN(Saentence:Len + (Screenkidth - Len) DIV 2);
END; (% Canter #%)

137

PROCEDURE Power(x : LONG;
y : INTEGER;
UAR Result : LONG);
(% Procedure which raises x to the y power (xty) y
must be greater than B. A procedure must be used
because functions can’t produce LONGs as a result. %)

VAR i * INTEGER;

BEGIN
Result = 1;
FOR i := 1 TO y DO
Rasult := Result % x;
END; (% Power %)

PROCEDURE Roundoff(UAR Number : LONG;
Places : INTEGER);

(% Procedure to round off a LONG INTEGER by Places positions %)

UAR Up : INTEGER:;
Du, LastDigit : LONG;
BEGIN
Up := 8;
Power(18, Places, DvJ; (% Create Dvu t= 18 1+ Places %)

(# Isolate the imaginary decimal place which
will be lost when Number is adjusted. *)
LastDigit := (Number DIV (Dv DIV 18)) - ((Number DIV Du}) % 18);

(% Next set Up := 1 if number needs to be rounded up
or set Up := -1 if number needs to be roundad down %)
IF LastDigit > 5 THEN Up :=
ELSE IF LastDigit <= -5 THEN Up := -1;
(% Divide number by Dy, add Up %3
Numbar := Number DIV Duv + Up:; (% to correctly round Number. %)
END; (% Roundoff %))

PROCEDURE PowerMod(x : LONG;

y : INTEGER;

UAR Result : LONG);

(% Procedure which raises x to the y power (xty) and adjusts
the imaginary decimal by rounding off Accuracy places
with the Roundoff procedure. This procedure must be used
in place of Power when our "adjusted LONGs" are involved. *%)

UAR i ¢ INTEGER;

138

BEGIN

Result := One;
IF y >= B THEN
FOR i = 1 TO y DO
BEGIN
Result := Result % x;
Roundoff(Result, Accuracyl; (% Adjust Result to %)
END (% Accuracy places %)
ELSE IF x = @ THEN Result := 8§ (% Check for baze of 8 *%)
ELSE
FOR i := 1 to -y DO
Result := One % Result DIV x; (% Increase decimal places prior to

division by muitiplying Result by One %)
END; (% PowerMod #*)

PROCEDURE Val(Data : STRING;
UAR Number : LONG:
LongFlag : BOOLEAN;
VAR Ok : BOOLEARN);
CONST Pilus = 1;
Minus = -1;
UAR Sign, Len, i,
DecimalPlaces : INTEGER;
Tens, Offset : LONG;
FoundDecimal : BOOLEAN;
BEGIN
Ok := TRUE; (% Initialize %)

Tens := 1;

Number = B;

Sign = 8;
DecimalPlaces := 8:
FoundDecimal := FALSE;

WHILE POS(’ ,*, Datal) > 8 DO
DELETE(Data, POS(’,’, Data), 1); (% Delete all commas from Data #%)

Len := LENGTH(Data);

IF Len = 8 THEN Ok := FALSE (* Check for null string %)

ELSE IF Datafll = '+ THEN Sign := Plus (% Check for + or - sign #%)
ELSE IF Datalll = ' - THEN Sign := Minus;

IF ABS(Sign) = 1 THEN (%# If + or - sign is present, *)

IF Len = 1 THEM Ok := FALSE (% check if length is greater #%)

ELSE (% than 1. If so0, then delete *)

BEGIN (# the sign from Data. %)

DELETE(Data, 1, 112;
Len := LENGTH(Datal:
END;

139

IF Data = .’ THEMN Ok := FALSE:; (% Another invalid entry 3

IF Len > MaxEntry THEN Ok = FALSE; (% Number iz out of range *3
IF Ok THEN (# Begin conversion to LONG #%)
FOR i = Len DOWNTO 1 DO
BEGIN
IF (Datalil < "8) OR (Batalil > '3) THEN Ok := FALSE
ELSE (% Character is valid number #%)
BEGIN
Momber = Number + (ORD(Datalil} - ORDU'8 1) #% Tens;
Tens = Tens % 18; (* Increment decimal place %}
END;
IF LongFlag AND (Datalil = ' .’) AND NOT FoundDecimal THEN
BEGIN (% First decimal found in LONG %)
DecimaiPlaces := Lean - i;
Ok := TRUE;
FoundDecimal := TRUE;
END;

END; (% FOR Loop #1}
IF NOT LongFlag AND (Number > MAXINT) THEN Ok := FALSE;
IF Sign <> 8 THEN Number := Number #% Sign; (% Ad_just =zign if negative #%}

(% If LONG then make it intoc an "adjusted LONG" by moving the
imaginary decimal over the right number of spaces to give it
a total of Acuracy decimal places. *)
IF LongFlag THEN
(% If the number of decimal plcces exceeds Accuracy then Roundoff %)
IF DecimalPlaces > Accuracy THEN

Roundoff(Number, DecimalPlaces - Accuracy)
ELSE
BEGIN
Power (189, Accuracy - DecimalPlaces, Offset);
Number = Number #% Offset; (*% Move decimal over the L
END; (% correct number of places *3

END; (% Ual %)

PROCEDURE Clrline;
(*% Erase the contents of line VertPos to the right of
horizontal position 22, reposition cursor for next try. %3

BEGIN
GOTOXY(22,UartPos);
WRITELNC® * :381);

GOTOXY(22,VertPos);
END; (# CirLine *)

140

PROCEDURE ReadLong(UAR LongNumbaer : LONG);:
(# Read a STRING and send it to Ual to be converted
to a LONG until a valid LONG is returned. *)
VAR InpSiring : STRING;
Good : BOGLEAN;

BEGIN
REPEAT
GOTOXY(22,VertPos };
READLN(InpStringJ;
Val (InpString, LongNumber, LongUalue, Good);
IF NOT Good THEN CirLine;
UNTIL Good;
VertPos := UertPos + 1; (% Increment vertical cursor position %)
END; (% Readlong %)

PROCEDURE RegdInt{(UAR IntNumber : INTEGER);
(* Read a STRING and send it to Val to be converted
to a INTEGER until a valid INTEGER is returned. *)

UAR InpString : STRING:
LongNumber : LONG;
Good : BOOLEAN;
BEGIN
REPEAT

GOTOXKY(22,VertPos);

READLN(InpString);

UVal {InpString, LongNumber, IntUaiue, Good);
IF NOT Good THEN ClrlLines

UNTIL Good;
IntNumber := TRUNC(LongNumber); (#% Convert LONG to INTEGER %}
VertPos = UartPos + 1; (% Increment vertical cursor position %)

END; (% ReadInt %)

PROCEDURE Writelong(OutNumber : LONGJ;
(% Convert our final LONG to a STRING and print it. #)
UAR QutString : STRING;

i, Sign, Ln : INTEGER;

BEGIN
Roundoff(OutNumber, Accuracy - 2); (% Round off to two decimal places %)
STR(QutNumber, OutString); (% Convert LONG to STRING *)
IF QutStringlll = - THEMN Sign := 1 (% Check for minus sign %)
ELSE Sign := 8;
IF LENGTH{QutString) - Sign = 1 THEN (% If answer is less than %2

INSERT(' 8, CQuiString, LENGTH{(OutStringl); (*% 18 cents, insert a '8 %)

141

INSERT(’ .°, OutString, LENGTH(OutStringl} - 112;

Ln = LENGTH(OutStringl:
FOR 1
INSERTC ,’, QutString,

Center (CONCATC % * ,0utStringl);

END; (% Writelong #)

PROCEDURE GetData;

BEGIN

YertPos := B;
ClaarScreen:

:= 1 TQ (Ln - 4 - Sign} DIV 3 DO

bn - Ci % 3 + 233

Center(’ %% [OAN PAYMENT %’);

WRITELN;
WRITELN;

WRITELN(Enter the following
WRITELN(' (You may use commas

WRITELN;
WRITE(’ Amount of loan:’ 3
ReadlLong(Principal 3;
WRITEC® Annual
ReadbLong(Annual Interest);
WRITEC(
ReadInt{(PaymentsPerYaear };
WRITE(" Term in years:’);
RoadInt(TermInYearsl;
END;: (% GetData %)

PROCEDURE Calculate;

Payments per year:

VAR Numerator, Denominator,

InteraestPerPeriod, Temp

NumberOfPayments

BEGIN (% Calculate %)
GOTOXY(13,193;
WRITE(’ Calculating...” };

:);

(% Set vertical

information’ J);
in your numbersl}:’ J;

(% Calli

interest (%):’ };

LONG;
INTEGER:

(% Insert daecimal

(% Insert commas

routine to accept

point %3

in answar %)

(% Add $ to answer and center %

cursor position %3

data %)

InterestPerPeriod := (Annual Interest DIV 188) DIV PaymentsPerYear:;
NumberOfPayments := PaymentsPerYear % TermInYears:

(% Two "ad justed LONGs" w
the decimal place back
Numerator = Principal

itl

be multiplied together;

we must bring

in line by rounding off Accuracy places. *)

* InterestPerPeriod;

Roundoff(Numerator, RAccuracyl;

142

PowerMod(Ona + InterestPerPeriod, -NumberOfPayments, Temp);
Denominator := One - Temp:;

(% One "adjusted LONG" wil! be divided by another so we must allow
for the cancellation of significant places by multiplying by
"One® first. "One® is equal to 1B 1 Accuracy *)

RegularPaymant := One % MNumerator DIV Denominator:

Total Interest := RegularPayment % NumberOfPayments - Principal;
END: (% Calculate *)

PROCEDURE Pr intfAnsuwer;

BEGIN
GOTOXY(B,12);
Center{’ Regular payment = 3;
Writelong(ReguilarPaymant);
WRITELN;
Center(’ Total interest on loan =');

Writelong(Total Interest };
END; (% PrintAnswer %)

BEGIN (*% Main Program %)
FPower(18, Accuracy, Cnel; (% Compute the number “One® by raising 18
to the Accuracy power (18 T ARccuracyl *3
YasMo = ' 7 ; (% Initiglize to ona space %)

REPEAT
GetData;
Calculate;
PrintAnswer;
GOTOXY(3, 19);
WRITEC(Would you like to calculate another? * };
READ(YesNo J);
UNTIL (YesMNo = "N) OR (YesNo = 'n’);

GOTOXY(8,221;

Center(’' That’’'s all folks...BYE®);
END. (% Loand %)

143

chapter 10

More Data Types

Now that you have become good friends with
all the different variable types that are built into
“standard” Pascal (INTEGER, REAL, CHAR,
BOOLEAN) plus the two additional types pro-
vided by UCSD Pascal (STRING and LONG
INTEGER), we are ready to enter the world of
Arrays, customized types (User-Defined), Sub-
range Types, and Sets.

All of the variable types we’ve worked with so
far (with the exception of STRINGs and LONG
INTEGERSs) are said to be simple or scalar data
types. They all have two main things in common:

1. They are ordered. This means that within a
specific type, one value will either be greater
than, less than, or equal to another value of
that same type. (Note that ‘“‘ordinal data
types” have this same characteristic. Ordi-
nal types are a subset of scalar types—a type
can be scalar but not ordinal, i.e., REALs,
but all ordinal types are scalar.)

2. You can’t break a scalar value into elements
(as you can with STRINGs)—it already is
an individual element.

Scalar data types can be divided into two cate-
gories—Standard scalar data types (those types
standard to Pascal) and User-Defined scalar data
types (which we will be covering later in this
chapter).

By using scalar data types as building blocks,
we can create another major category of data
types—structured data types. This type is created
by putting together the scalar types (both stan-
dard and user-defined) in new ways. The first of
the structured data types we will look at is the
Array.

144

ARRAYS—LINKING SCALARS TOGETHER

An array is a bunch of scalar data types linked
together. To help illustrate arrays, we will use the
problems of a certain freight train company. One
day, this company, we’ll call it P-Express (after
Uncle Pascal), decided to do an inventory of one
of its trains. This train had 10 freight cars, each
of which was either a boxcar, a flatcar, a tank car,
or a cattle car. The company wanted to find out
how many of each type car there were in the train.
Since counting the cars by hand was much too dif-
ficult for P-Express, they came to us and asked for
help. First we tried letting each car be represented
by one of ten INTEGER variables named Carl,
Car2, Car3,... Carl0. Then we checked the con-
tents of each variable to see what kind of car
it was. We used CONSTants to make our program
clearer:

CONST Boxcar
Flatcar
Tankcar
Cattlecar

’

i
bR oy

Here is a procedure which counts the different car
types:

PROCEDURE CheckCar(FreightCar : INTEGER);
BEGIN
CASE FreightCar OF
Boxcar : BoxSum := BoxSum 4 1;
Flatcar : FlatSum := FlatSum 4 1;
Tankcar : TankSum := TankSum -+ 1;
Cattlecar : CattleSum :=— CattleSum 4+ 1;

END; (* CASE *)
END; (* CheckCar *)

So far, we had no problems. However, sending
each of the 10 variables to the CheckCar proce-
dure was rather awkward:

CheckCar(Cart);
CheckCar(Car2);
CheckCar(Car3);
CheckCar(Car4);
CheckCar(Car5);
CheckCar(Car6);
CheckCar(Car7);
CheckCar(Car8);
CheckCar(Car9);
CheckCar(Car10);

Awkward, but not unbearable. But what if P-
Express all of a sudden discovered they had 100
cars on their train (maybe someone had forgotten
to write the last zero on the number) !! Using the
above method would be unbearable and very im-
practical. However, since the same operation
needed to be carried out on each car, we found we
could do the counting much more easily by using
an array. Each car could be thought of as an ele-
ment in the array. If the name of the array was
still Car, then each freight car could be accessed
by Car[n] where n was an INTEGER from 1 to
10 (the number of freight cars in the train). This
number within the square brackets is called a sub-
script. The first car can be referred to by Car[1],
the last car by Car[10]. Equipped with an array,
we sent the parameters to CheckCar much more
easily :

Number := 10;
FOR ThisCar := 1 TO Number DO
CheckCar(Car[ThisCar]);

Ten times more easily, to be exact! If their train
had 100 cars we would just have to change the
value in Number to 100 (Number := 100).

To declare the freight train array, we wrote
the following line:

VAR Car : ARRAY[1..10] OF INTEGER;

The numbers within the brackets show the lower
and upper boundaries to this array. In this case
they are INTEGER constants, but they could be
any ordinal values. The general declaration is:

VAR Name : ARRAY[LowerBound..UpperBound] OF TYPE;

TYPE can be any data type that is defined at this
point in the program. Notice the two periods*
between the LowerBound and the UpperBound.

* In some versions of Pascal, these are called “lazy co-
lons” because they look like a colon lying down on the job.

145

By now, you may have noticed a similarity be-
tween how we access an element in our freight
train array and how we access elements in a
STRING. There’s no coincidence in this similar-
ity because a STRING is essentially an array of
CHARs. If Pascal didn’t come equipped with
STRINGs, they could be declared in the follow-
ing manner:

VAR NewString : ARRAY[1..80] OF CHAR;

The UpperBound (80) is the maximum length of
this string of characters.

Multidimensional Arrays

The arrays we have presented so far are called
“one-dimensional arrays” because they can be
thought of as having elements in only one direc-
tion. A string is a good example of this—it is a
series of elements strung together in a row. Here
in Fig. 10-1 is a representation of a one-dimen-
sional array with ten elements (like our train).

1 2 3 4 b5 6 7T 8 9 10

[N N Y M O

Fig. 10-1. Representation of one-dimensional array with
ten elements.

Two-Dimensional Arrays—After we did the in-
ventory for P-Express, they presented us with a
new problem. It seems this freight train had been
out of commission for quite a while and had picked
up a few unwanted pests (mice, flies, and fleas).
P-Express wanted to bring in an exterminator
who charged $.50 per mouse, $.10 per fly and $.05
per flea (we thought this was rather absurd—
charging per pest, but that’s the way P-Express
liked doing business). We knew how many of each
pest there were in each car (providing expert pest
counters was part of the extermination package)
but we didn’t know the totals for the entire train.
We stored this important information in our Car
array by making it into a “two-dimensional” ar-
ray. Here is how we declared it:

VAR Car: ARRAY[1..10] OF (* Which freight car *)
ARRAY[1..3] OF (* Pest type *) INTEGER;

This declaration says that each of the original
elements now has three additional elements of its
own. Every car can contain a specific number of
each of the three different pests. To find out how
many flies that the fifth car has, we can access
Car[5,2]*. The second number (2) refers to the

* Another way to access element 5,2 is Car[5][2]. How-
ever, in this book we will use the other method (Car[5,2]).

0
20

%

S==
S
=

=

flies (not the number of flies, but the element in
which the number of flies is stored). In the repre-
sentation of this two-dimensional array (Fig. 10-
2), we placed the number 12 in element 5,2. This
means there are 12 flies buzzing around in freight
car number 5:

1 2 3 45 6 7 8 9 10

1 (Mice)
2 (Flies)
3 (Fleas)

Fig. 10-2. Representation of two-dimensional array.

12

Each square represents an element in the array.
There are a total of 10 * 3 or 30 elements here.

Following is a fragment of the program we used
to estimate the exterminator’s bill (the variable

Cost is a REAL variable) :
Cost := 0.0;
FOR ThisCar := 1 to 10 DO
BEGIN
Cost := Cost 4 0.50 % Car[ThisCar,1];
Cost := Cost 4+ 0.10 % Car[ThisCar,2];
Cost := Cost 4 0.05 x Car[ThisCar,3];
END;

By storing the costs per pest type in another ar-
ray, we can make this even more efficient (List-
ing 10-1).

Notice that we used CONSTants in the variable
declaration section to make this program clearer.
We also used two nested FOR loops, the outer loop
(i) moves the program through each of the 10
freight cars and the inner loop (j) moves the pro-
gram through each of the three different pests.

146

4

! /fé"’"ﬂ/ Yy S
DAY 4y
AN T
/////: ok RARZZRAAR K
Three-Dimensional Arrays — The company

which owned this pest-ridden train was not doing
well at all (with all the “undesirables” on board
it’s no wonder!). They had four more trains in
exactly the same condition. We solved their new
problem with a three-dimensional array. Here is
how we declared it:

VAR Car : ARRAY[1..5] OF (* Which train *)
ARRAY[1..10] OF (* Which freight car *)

ARRAY[1..3] OF (* Pest type *) INTEGER;

By using CONSTants, we can make this declara-
tion look clearer:

CONST Trains
FreightCars
Mice
Flies
Fleas

10;

1

i

w220

VAR Car : ARRAY[1..Trains] OF (* Which train *)

ARRAY[1..FreightCars] OF
(* Which freight car *)

ARRAY[Mice..Fleas] OF
(* Pest type *) INTEGER;

Note: Although you can use constants for the
lower or upper bounds declaration in an array,
you cannot use variables. This means that the size
of the array must be established at the time the
program is written so the compiler can set aside
the right amount of space. There is no “dynamic
space allocation” in Pascal. That is, the size of
arrays can’t be adjusted during the run of the
program.

Now that we had a three-dimensional array set
up, all we had to do was add one more level to our
nested FOR loop to do our calculations:

Listing 10-1.

PROGRAM ExterminatorCosts:

(# Program to calculate extermination costs for P-Express %)

(* Number

of cars in the train #)

ARRAYL1..181 OF (* Which freight car #%)

ARRAY[Mice..Fleas]l OF (% Pest tupe %) INTEGER;

CONST FreightCars = 18;
Mice = 13
Flies = 23
Fleas = 33
UAR Car :
PestPrice : ARRAYIMice..Fleasl
Cost : REAL:;

PROCEDURE Calculate;

OF RERL;

in dollars %)

(% Loop through freight cars %}

(% {ocp through pest tupe *3

dimensional array with only 40 elements in each
dimension could feasibly take up 40 * 40 * 40 =

UAR i, 4 @ INTEGER;
BEGIN

PestPricelMicel := B.58; (% Price per pest

PestPricelFlias]l := B8.18;

PostPricelflieas] := 8.85;

Cost = B.8;

FOR i = 1 to FreightCars DO

FGR j = Mice to Fieas DO
Cost := Cost + PestPricel jl % Carli, jl;

END; (% Calculate %)
FOR k := 1 to Trains DO

FOR i := 1 TO FreightCars DO

FOR j := Mice TO Fleas DO

Cost := Cost + PestPrice[j] * Carlk, i, j};

Fig. 10-3 is a representation of this three-dimen-
sional array.

Arrays and Memory—We're sorry to say that
P-Express is no longer with us—the spray which
the exterminator used rusted out the metal parts
in all five of their trains and caused them to fall
apart. (Not to worry, though, the insurance money
they collected enabled the same folks to resurface
as “Wonder Wheels, Inc,” manufacturers of solar
powered skateboards.)

While we can’t do business with P-Express any-
more, we can, however, continue adding dimen-
sions to arrays. A four-dimensional array with an
upper bound of 6 would have Fig. 10-3 as its first
element, and a total of six of these three-dimen-
sional arrays as elements. The only limit to the
number of dimensions is memory—multidimen-
sional arrays eat up memory rapidly. For exam-
ple, our 6 by 5 by 10 by 3 array takes up 6 * 5 *
10 * 3 = 900 memory calls—or more if it takes
more than one cell to store an element. A three-

64000 cells or possibly all of the memory in your
microcomputer!

1283 45 6 7 8 9 10

. Mice
Trelnn Flies
Fleas

1 2 3 45 6 7 8 9 10
. Mice
Trgln Flies
Fleas

1 2 8 45 6 17 8 9 10
. Mice
Trgm Flies
Fleas

Fig. 10-3. Representation of a three-dimensional array.

147

So it’s a good idea to keep array
sizes as small as possible or they’ll
eat you out of bit and byte! Uncle
Pascal says: He who keeps a ty-
ranosaurus rex for a pet had better
own a cattle farm or an elephant
herd for its snacks!

String Arrays

Using arrays of STRINGsS is slightly different
than arrays of scalar types. This is because a
string is already a one-dimensional array (it is
a structured data type, not a scalar type). Using
strings in one-dimensional arrays is fairly
straightforward. If we have the following decla-
ration:

VAR TestString : ARRAY[1..5] OF STRING;

we can access any one of the five string elements
with TestString[n] where n can be an INTEGER
from 1 to 5. However, as you'll remember, this
looks exactly like accessing the individual CHAR
elements of a single string. Using STRING ar-
rays doesn’t block you from accessing the CHAR
elements—just consider a string to be a two-di-
mensional array of CHAR. The first subscript ad-
dresses the string we are referring to; the second
subscript references a specific CHARacter in that
string. Thus, TestString[2,7] refers to the seventh
character of the second string in the array. How-

ever, we must again warn you about accessing
nonexistent STRING elements. If TestString[2]
was only six characters long, the program would
crash instantly. So only access the CHAR ele-
ments of a string array if you know exactly how
long it is!

Listing 10-2 gives an example based on the
Chapter 9 BackwardsWrite program (Listing
9-1).

Here is a run of this program:

Enter five strings:
. This is an example of what

. happens if you stand on

. your head too long,

. not to mention walking backwards!
. Iretteb hcum ,hA

(S S I

Here they are again, backwards:

. Ah, much better!

. Isdrawkcab gniklaw noitnem ot ton
. ,gnol oot daeh ruoy

. no dnats uoy fi sneppah

. tahw fo elpmaxe na si sihT

- N wdO

In this program, we use a FOR loop to help enter
the five strings. Then these strings are printed out
in reverse order (the last string entered is printed
first), and each string is written backwards (last
character in the string is printed first). You’ll no-

Listing 10-2.

PROGRAM StringfArrays;
VAR TestString -
: INTEGER;

i, 4
BEGIN
PAGECQUTRUT J;
WRITELNC Enter five strings:’);
FOR i := 1 TO § DO
BEGIN

WRITECiL,” . ")3
READLN(TestString[il}:
END;

WRITELN;

ARRAYL1..51 OF STRING;

WRITELNC(' Here they are again, backwards:’ };

FOR 1 :=
BEGIN
WRITECL, .

5 DOMWNTO 1 DG

")

(% Write strings

in reverse order %2

FOR ; := LENGTH{(TestStringlil} DOWNTO 1 DO

WRITE(TestStringli, 51);
WRITELN;
END;

END. (% StringArrays *)

148

(% Write each string out backwards %)

tice the inner loop (j) references the individual
character of each string.

Since a one-dimensional string array can op-
tionally be considered to be a two-dimensional
CHAR array, we can optionally access the indi-
vidual character elements (not forgetting the in-
stantaneous crash!). In all other array types, you
must reference all dimensions every time the ar-
ray name is used. If ZooFeed is a two-dimensional
INTEGER array, then every time ZooFeed is
written, you must include both dimensions:

ZooFeed[Chimps, Days];
ZooFeed[Elephants];

Ok
Not Ok—2nd subscript missing

Miscellaneous Extras

Here are a few more things you should know
about arrays, even if you never have to use them.

Noninteger Subscripts—We said that the lower
and upper bounds in an array can be any ordinal
data type. This means the following declarations
are legal:

VAR Letter : ARRAY['A’..’Z'] OF INTEGER;

This defines a 26 element INTEGER array which
uses CHARs for subscripts:

Letter['M’] := 325;

This is not mixing data types. The values of the
elements in the array Letter are INTEGERs.
However, the subscript which points to each of
Letter’s elements is a CHAR type.

VAR Booly : ARRAY[FALSE..TRUE] OF REAL;*

This defines a 2 element REAL array which can
use either FALSE or TRUE as subscripts:

Booly[FALSE] := 12.435;
VAR LightSwitch : ARRAY[—7..7] OF BOOLEAN;

This defines a 15 element array (don’t forget to
count 0) of type BOOLEAN. Each of the 15 ele-
ments can only have one of two values—TRUE
or FALSE:

LightSwitch[—5] := ODD(n);

A Short Cut—There is a faster way of declar-
ing multidimensional arrays. This declaration:

VAR BigOne : ARRAY['A".'F’] OF
ARRAY[1..20] OF
ARRAY[—20..0] OF REAL;

* In some earlier versions of UCSD Pascal, this won’t
work because of an elusive bug.

149

could be written like this:
VAR BigOne : ARRAY[‘A'..'F’, 1..20, —20..0] OF REAL,;

Commas can be used to separate the range for
each of the dimensions.

Expressions as Subscripts—The subscript in an
array can also be an expression which reduces to
the ordinal type indicated by the lower and upper
bounds in the declaration statement:

Letter[CHR(n + 50)] := Yolu; subscript of

type CHAR
subscript of

type BOOLEAN
subscript of

type INTEGER

Booly[i > 35] := 1.12E6;
LightSwitch[(21 — i) DIV 2] := Xoot;

Care must be taken so that these expressions eval-
uate to a value within the range of the declared
lower and upper bounds.

We'll say more about arrays at the end of this
chapter with the Tic-Tac-Toe program.

QUIZ—ARRAYS

True or False
1. A data type can be scalar but not ordinal.

2. A scalar data type can be broken into elements (like
STRINGS).

3. The elements in an array must be of the same type.

4. The two-dimensional STRING array MyString can be also
thought of as a three-dimensional CHAR array.

5. You can use any scalar data type as the subscript in an
array.

CUSTOMIZED TYPES—
“ENUMERATED” USER-DEFINED TYPES

In the last section, yow’ll remember that we
wanted to make our array example clearer by as-
signing constant names to some of the integer val-
ues (Flatcar, Mice, Flies, etc.). There is a better
way—we can tnvent our own data types (called
user-defined data types) and define exactly what
the possible values for each type are.

Our First New Type

Here’s an example of a user-defined type. We
can create a new type called Pests and list all pos-
sible values this type can have:

TYPE Pests = (Mice, Flies, Fleas);

We now have a new variable type called Pests.
The values Mice, Flies, and Fleas are the con-
stants that a variable of TYPE Pests can have.
This user-defined type is called an “enumerated”

AJD)

A TS

TELEVISIONS

type because we list its values. We can now de-
clare a variable to be a Pests variable:

VAR Varmint : Pests;

The only possible values that can be assigned to
this Pests type variable are Mice, Flies, and Fleas.
Trying to assign any other value of any other data
type to a variable of type Pests will cause an er-
ror:

Varmint := Flies; Ok
Varmint := °'Fleas’; Not Ok—Assigning a STRING

to a Pests variable
Varmint := 3; Not Ok—Assigning an INTEGER

to a Pests variable

This new data type is still a scalar type—the
order of its values is determined by their order
in the above declaration list. Therefore, Mice <
Flies and Fleas > Flies. We are not assigning
any of the “constants” (the values Mice, Flies,
Fleas) of type Pests a numeric value. If we say
WRITELN (Mice); we’ll get the same kind of
error as the one that occurs when frying to
WRITELN a BOOLEAN value—user-defined data
types can’t be written to the screen or read from
the keyboard. They are for logic flow only. Let’s
invent some other data types:

150

TYPE Televisions = (BlackAndWhite, Color, Projection);

Dogs = (Poodle, GermanShepherd, Collie,
Terrier, StBernard, Mutt);
Months = (January, February, March, April,

May, June, July, August,
September, October, November,
December)

SpaceDrives = (Chemical, Nuclear, lon, Impulse,
AntiMatter, HyperDrive);

= (Vanilla, Chocolate, Carob, Peach,
Strawberry, Blueberry, MintChip,
MochaChip, MarbleFudge);

Flavors

One of the values a variable of TYPE Months
can use is August. One of the walues a variable
of TYPE SpaceDrives can use is AntiMatter. We
are really introducing a new way of thinking here.
HyperDrive is a SpaceDrive value, just as 34 is an
INTEGER value.

Why Define New Types?—You may ask, “Why
bother with new types when I could make my pro-
grams just as clear by using names made of
strings or by assigning constant names to integer
values ?” There are three major reasons why user-
defined types are better:

1. They are better than using STRING names

because they take up less memory space and
execute faster.

2. It’s more convenient to declare new data
types than list a bunch of CONSTants along
with their appropriate values (which is
somewhat awkward).

3. By creating new types, Pascal will automati-
cally make sure that you are not mixing these
new types with any other types (just as it
does when you try to mix REALs with
CHARs). As you must know by now, mixing
types will yield an error! This is a fantastic
debugging tool!!!

Oh great! Another way to have a Pascal pro-
gram crash! Why is Pascal so unforgiving about
mixing variable types? Let’s say you choose the
method of assigning a plethora of constant names
to a series of integer or string values. The larger
your program, the more difficult it is to remember
when to use which constant name, and the more
likely you are to make a mistake involving assign-
ing the wrong constant to a variable. By declaring
new data types, you can use Pascal’s pickiness
as a tool to help uncover any errors you made
mizing data types or assigning an “illegal” value
(within the context of your program) to a vari-
able. Think of Pascal as your friendly detective
—tirelessly hunting down mismatched types for
your benefit!

This brings us to one of the most important
features of Pascal—once you conceive of a solu-
tion to a problem and implement it in Pascal,
Pascal is designed to “enforce” your conceptuali-
zation of the solution. If you decide that a vari-
able of a certain type only needs 6 possible values,
Pascal will make sure you don’t unwittingly throw
in a Tth.

Uncle Pascal says: Pascal will
make sure you don’t try to mix
Nuclear SpaceDrives with Peach
flavored ice cream, even though
your space ship may be painted the
color of a peach. Your pet Poodle
may have been born in March, but
Pascal will protect you from making the mistake of
assigning o Months type value to a Dogs type vari-
able (unless your pet happens to be a March Hare) !

Using the New Types

The TYPE declaration appears at the beginning
of a block just after the CONST declaration and
before the VAR declaration (if you have any).
As with CONSTants and VARiables, these new
TYPEs can be local to one block or global to many
blocks (or the entire program).

151

Now that we have created some user-defined
data types, we can declare variables using these
new types:

VAR Scoop . Flavor;
WinterMonth : ARRAY[1..3] OF Month;
CheckMonth : Month;
WatchDog,
YapDog : Dogs;

And in the program itself we can have statements
such as:

i := ORD(Blueberry); (* value of i is § *)
Scoop := PRED(Chocolate); (* value of Scoop is Vanilla *)

WinterMonth[1] := December;
WinterMonth{[2] := January;
WinterMonth[3] := February;

(* will cycle 12 times *)
FOR CheckMonth := January TO December DO
(* If CheckMonth is a WinterMonth, then get the shovel *)
FORi := 1 TO 3 DO
IF WinterMonth[i] = CheckMonth THEN ShovelSnow;

WatchDog := GermanShepherd;

YapDog := Poodle;

IF WatchDog > YapDog THEN Bark; (* WatchDog IS greater
than YapDog be-
cause GermanShep-
herd > Poodle in or-
iginal type declara-
tion *)

You’ll notice that the intrinsic function ORD can
be used with these new scalar types. The first con-
stant of a type has the ordinal value of 0. Since
Blueberry is the 6th constant listed as a Flavors
type, its ordinal value is 5 (Vanilla is 0). Because
the three intrinsic functions which relate to the
order of a value (ORD, PRED, SUCC) can be
used with our new types, we must make sure that
each constant belongs to only one type:

TYPE Measurements (Inches, Feet, Yards,
Centimeters, Meters);

(Ears, Hands, Feet, Toes);
error will occur here

BodyParts

How would Pascal know whether the ORDinal
value of Feet was 1 (in Measurements) or 2 (in
BodyParts) ? The above type declaration would
receive a compiler error! However, if a constant
of a user-defined type appears in two TYPE dec-
larations, one in an inner block and one in an
outer block, there won’t be any error unless the
inner block tries to access the outer block’s type.

Using the Relational Operators With User-De-
fined Types—The relational operators (=, <, >,
<=, >=, <>) can be used on user-defined types
(WatchDog > YapDog) but not arithmetic opera-

tors (what could Poodle + StBernard or Mint-
Chip / Carob mean?).

PRED and SUCC — You may have wondered
what to do with the intrinsic functions PRED and
SUCC. Now we can demonstrate a good use for
them. With numeric types we could do the fol-
lowing:

Gt

WHILE | <= 10 DO

BEGIN _

WRITELN(i);

=141 (* Increment i *)
END;

Since you can’t use the mathematical operators +
or — on a user-defined data type, how could you
increment (or decrement) a variable of type
Months, for example? With SUCC or PRED! In
the next example, m is a Month type variable:

m := January;
WHILE m < December DO
BEGIN
WRITELN(ORD(m));
m = SUCC(m);
END;

(* Increment month (m) *)

On execution, we would see the numbers from 0
to 10 printed on the screen.

QUIZ—ENUMERATED USER-DEFINED
DATA TYPES

True or False
1. All user-defined data types have ordinal values starting
at 0.

2. User-defined data types can be written to the screen or
read from the keyboard.

3. It’s all right to have the same constant appear in two or
more TYPE declaration statements at the same block
level.

4. To increment a variable of a user-defined data type, you
can use the intrinsic function PRED.

SUBRANGE DATA TYPES

Besides the enumerated user-defined types we
have just covered, there is another user-defined
type called subrange data types. Many times it is
not necessary to create a completely new data type
—a portion of an existing scalar type may be what
you really want. For example, if the values your
INTEGER variable will assume are from 0 to 100
(like the score on a driving test), you can specify
that range in a subrange type:

TYPE Score = 0..100; (* Create subrange type *)

VAR TestResult : Score; (* Declare variable *)

152

This type statement says that the subrange type
Score can use any INTEGER value from 0 to 100.
Why bother when you can use a plain INTEGER
type? To add clarity to the program and guard
against errors, that’s why. By stating that the
only values TestResult can have are from 0 to 100,
this variable’s purpose takes on additional mean-
ing. And if there is a logic error in your program
that allows TestResult to exceed 100 or fall be-
low 0, Pascal will let you know!

Besides INTEGERs, we can make subrange
types using any scalar type except for REALs.
Here are some CHAR subrange types:

Type Capletter = 'A'.'Z’;
SmallLetter = 'a’..’2’;
Digit = '0..9;

We can also use user-defined types. Recall our
Flavors type:

Flavors = (Vanilla, Chocolate, Carob, Peach,

Strawberry, Blueberry, MintChip,
MochaChip, MarbleFudge);
FruitFlavor = Peach..Blueberry;

FruitFlavor is a subrange of Flavors.

The general format for subrange types is:
TYPE Name = LowerBound..UpperBound;

This new type can have any value from Lower-
Bound to UpperBound. Also, LowerBound must
be less than or equal to UpperBound. The follow-
ing example:

TYPE Someint = 25..—25;

is incorrect because the LowerBound is greater
than the UpperBound.

It is all right to mix different subranges of the
same type in expressions. If we have the follow-
ing types:

TYPE PosDigit = 0..9;
NegDigit = —9..—1;

and then declare the following. variables:

VAR HighNumber : PosDigit;
LowNumber : NegDigit;
Number : INTEGER;

then the following are legal:

HighNumber := §5;
LowNumber := —1 x HighNumber;
Number := LowNumber x HighNumber;

All of these variables are based on INTEGER
types so mixing them together is fine. However,
we must watch for range errors:

HighNumber := 5 + Number;

This statement will yield an error if Number is
greater than 4 or less than —5 because then we’d
be assigning HighNumber a value beyond the de-
clared range of PosDigit.

It’s also acceptable to have overlaps or a dupli-
cation of values when using subranges:

TYPE Degrees = 0..360;
Digit = 0..9;
Temperature = 32..212;

All these types are subrange types based on INTE-
GERs. Another example, using user-defined types;

TYPE Days = (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);
Weekend = Saturday..Sunday;
ExtendedWeekend = Friday..Sunday;

The overlap is legal because the ordinal value had
already been established when the type was first
declared. We don’t change the ordinal value of the
type by choosing to include different portions of
that type in a subrange type—the compiler never
gets confused.

The Shorthand Method May Not Be the Best—
An alternate way to declare new types (both enu-
merated and subrange) is to skip the TYPE decla-
ration and do it in the VAR declaration section:

VAR HighNumber : 0..9;
Scoop . (Vanilla, Chocolate, Carob, Peach,
Strawberry, Blueberry, MintChip,
MochaChip, MarbleFudge);

However, we feel that it is clearer to declare new
types in the TYPE declaration section and keep
this step separate from VAR declarations. This is
especially true if you plan to pass these variables
as parameters to procedures or functions. As we
mentioned in Chapter 9, a parameter must be
paired with a type name. The variables High-
Number and Scoop have type descriptions to their
right. If we wanted to pass Scoop as a parameter
to a procedure called MakeSundae, we would have
no way of indicating its type in the actual param-
eter:

PROCEDURE MakeSundae(lceCreamFlavor : ?);
BEGIN

END; (* MakeSundae *)

153

BEGIN (* Main Program *)
MakeSundae(Scoop);

Again, the solution is to create a type name in the
TYPE declaration section (as we did earlier in
this chapter with type Flavors), then use this
name with parameter lists. We will incorporate
subrange types in the Tic-Tac-Toe program at the
end of this chapter.

What About LONG INTEGERs?

You may have been wondering why we haven’t
classified LONG INTEGERSs yet—are they scalars
or structured data types? LONGs were created as
a solution to UCSD Pascal’s limitations on accu-
racy for REALs. They are really unclassified be-
cause they have features of simple (scalar) types
as well as complex (structured) types. LONGs
are:

1. Like scalar types—you can use mathematical
operators on them.

2. Like structured types — you can’t return a
LONG with a function because they are non-
scalar (unless you use variable parameters).

3. Unlike scalar types—see reason No. 2; sca-
lars can be returned by a function.

4, Unlike structured types—you can’t access in-
dividual elements using [subscripts] (or any
other direct way).

Because of all this, we won’t attempt to figure out
what category LONGs really fall in, we’ll just use
them and keep quiet.

QUIZ—SUBRANGE TYPES

True or False
1. Subrange types can be based on any scalar type except
for REALs.

2. It’s all right for the first boundary in a subrange type to
be greater than the second boundary.

3. It’s all right to mix different subranges of the same type
in expressions.

4. User-defined types can be declared in the VAR declara-
tion section instead of the TYPE section.

SETS

Have you ever owned a set of chess pieces, a set
of silverware, or a set of teeth (natural or false) ?
A set is a collection of objects which are all of the
same type. You won’t find a Monopoly marker in
your chess set nor a wooden fork mixed in with

the silverware. The same holds true for sets in
Pascal. A set is a structured data type which can
be based on any scalar type. When using sets, we
work with the entire set as a whole, rather than
worrying about the specific values of an element
as we do with arrays.

Using Sets

In the following example, we want the user to
enter either a ‘Y’ for yes or an ‘N’ for no. We also
want to allow for UPPER or lower case letters.
Here is how we might write this:

REPEAT
GOTOXY(0,5);
WRITE('Do you want to play again? °’);
READ(Ch);
UNTIL (Ch = 'Y’) OR (Ch ="y’
OR (Ch = 'N’) OR (Ch = 'n’);
The last statement is rather awkward. By using
sets, we can replace it with the following state-
ment and simplify it:
UNTIL Ch IN 'Y, 'y', 'N’, 'n'];
The characters within the square brackets are
members in the set of acceptable answers for our
Yes/No question. IN is a reserved keyword. What
we are checking is whether or not the value of Ch
is a member of our set. If so, then the expression:
Ch 'N [!Y], 'y’, :N:, |ny]
will be TRUE, otherwise the REPEAT loop isn’t

exited.
We can also create set types and set variables:

TYPE CharacterSet = SET OF CHAR,;

VAR - Answer : CharacterSet;

Here we are creating a new type which can have
a set of any CHARs as its value. Next, we declare
Answer to be a CharacterSet type variable. To as-
sign Answer a value we do this:

Answer = ['Y’, 'y, 'N, 'n’];

Now our UNTIL statement looks like this:
UNTIL Ch IN Answer;

The general format for declaring a set type is:
TYPE SetName = SET OF BaseType;

Where BaseType can be any defined scalar type
(standard or user-defined) except for REAL.
When making sets out of user-defined types, the
type should be declared before creating the set:
TYPE Fruit = (Lemon, Orange, Tangerine, Grapefruit,
Lime, Pineapple, Banana, Grape, Plum,

Apple, Avocado, Tomato, Pear);
FruitSet = SET OF Fruit;

Now we can declare some set variables:

VAR FruitSalad, CitrusFruit,
SandwichFruit, SourFruit,

FruitBowl, LeaveOut, SweetCitrus : FruitSet;

Next we can assign some values to these vari-
ables:

CitrusFruit := [Lemon, Orange, Tangerine,
Grapefruit, Lime];

SourFruit 1= [Lemon, Lime};
SandwichFruit := [Avocado, Tomato];

If the members of a set are consecutive values in
the BaseType (as with the CitrusFruit set) we
can take a short-cut:

CitrusFruit ;= [Lemon..Lime}];
Or we can combine methods:

FruitBowl := [Lemon..Apple, Pear];

Set Operators

There are a number of operators that can be
used with sets:

+ Set Union:
LeaveOut := SourFruit 4 SandwichFruit;

LeaveOut will be the set [Lemon, Lime, Avo-
cado, Tomato]. Union combines the two sets
into a new set—all the members of the two sets
will end up in the final set. Duplications will be
ignored. For example, the union of SourFruit
and CitrusFruit would have the same members
as CitrusFruit. This is because SourFruit is a
“subset” of CitrusFruit, that is, all the mem-
bers in SourFruit are already in CitrusFruit.

— Set Difference:

FruitSalad := FruitBowl — LeaveOut;

FruitSalad will be the set [Orange, Tangerine,
Grapefruit, Pineapple, Banana, Grape, Plum,
Apple, Pear]. The difference of two sets is cre-
ated by eliminating all members from the first
set which are also found in the second set.

* Set Intersection:

SweetCitrus := CitrusFruit s FruitSalad;

SweetCitrus will be the set [Orange, Tangerine,
Grapefruit]. The intersection of two sets con-
tains only the members which are common to
both sets.

There are also four relational operators you can
use to compare sets in Boolean expressions:

= Set Equality:

SourFruit = CitrusFruit ~—+ FALSE
[Tomato, Lemon] = [Lemon, Tomato] — TRUE

Set equality means both sets contain exactly the
same members. The order of the members is not
important.

<> Set Inequality:

— TRUE
— TRUE

FruitBowl <> FruitSalad
CitrusFruit <> [Lemon..Grapefruit]

The members in the two sets don’t match ex-
actly.

<= “Is Contained In”:

FruitSalad <= FruitBow! — TRUE
[Avocado, Tomato] <= SandwichFruit — TRUE
CitrusFruit <= SourFruit — FALSE

One set “is contained in” another set if every
member in the first set is also in the second set.

>= “Contains”:

CitrusFruit >= SourFruit — TRUE

One set “‘contains” another set if every member
in the second set is also in the first set.

Other Structured Data Types

In addition to the Array and Set, there are two
more structured data types which we won’t be cov-
ering in this book. They are the Record, that al-
lows you to work with data structures which have
elements of different types, and the File, that al-
lows you to store data on an external device, like
a floppy disk.

QUIZ—SETS

True or False

1. The expression Ch IN Answer returns a Boolean value.

2. The BaseType of a set can be any scalar type.

3. When sets are combined in set union (+), every member
of both sets appears once in the resulting set.

PUTTING IT ALL TOGETHER—
THE TIC-TAC-TOE PROGRAM

Arrays, as you now know, are most useful for
accessing information which is ordered in a spe-
cial way. One area in which this is especially true
is in the creation of computer games, particularly
those employing a board with men or markers that
move from position to position. In fact, computer
games have quickly become one of the most popu-

1585

lar uses for microcomputers today, offering the
opportunity for a battle of wits between man and
machine.

In this section, you will learn how the game of
Tic-Tac-Toe can be represented in Pascal. This
program is a culmination of everything we taught
you. We include this program so you can review
all the elements in this book, not to teach you game
theory or illustrate the best example of a Tic-Tac-
Toe playing computer.

In addition to playing against you, the computer
will take care of everything—displaying the game
board, allowing you to input your move, moving
the markers, and checking for ties or a winner.
A special “move formula” (algorithm) which al-
lows the computer to decide what move to make
will be developed. Before we get into the program,
let’s review the rules of the game, then we will
translate these rules into a program.

Remember the Rules?

For review, there are two players in the game
of Tic-Tac-Toe. One player uses an “X” marker
and the other player (in this case the computer)
uses an “0O” marker. The playing board consists
of a square divided into nine smaller squares, and
the goal of the player is to get three of his/her
own markers in a straight line by filling a row,
column, or diagonal. Plays are made on the board
in alternate moves. If no player gets a line and all
squares are filled, the game is a tie or ‘“cat’s
game.” (Uncle Pascal tells us that it’s called this
because when two tabbies play Tic-Tac-Toe to-
gether, there’s usually no winner!)

The moves of a typical game may go like this:

X FIRST MOVE 0 FIRST MOVE X SECOND MOVE

0 SECOND MOVE X THIRD MOVE 0 THIRD MOVE

X FOURTH MOVE

There are a few simple strategies you can em-
ploy to make your chances of winning more likely.
Rather than giving them away, enter this program
and use your computer as an untiring teacher!

Representing the Board

Our first problem is to represent the board in a
manner which makes it easy for the computer to
keep track of moves and play a strong game and
also makes it easy for a human to play. Rather
than compromising the play of either player by
trying to create one solution for both, we will
use two solutions. For the human, we will number
each square from 1 to 9 and use cursor control to
fill in the markers. For the computer, we will use
an array. Since the board has three rows and three
columns, we will use a two-dimensional array with
three elements in each dimension. We will call this
array Square. The computer will reference the ar-
ray like this:

Square[1,1] Square[1,2]
Square[2,1] Square[2,2] Square[2,3]
Square[3,1] Square[3,2] Square[3,3]

The first subscript represents the row and the sec-

ond the column.

Square[1,3]

Representing the Markers

We need some way to represent internally the
two players’ markers, the X and the O. On the
screen, we will use an X and an O (how origi-
nal!). The method we chose allows the computer
to make decisions rapidly. We will use the integer
value —1 to stand for the X and we will store it in
the constant Computer. The value +1 (or just 1)
will represent the human and it is stored in the
constant Human. The value of any element indi-
cates who is in any particular square. (An empty
square will be represented by the value 0 which
is stored in the constant Empty.) So it follows
that if Square[2,2] contained the value Computer
(i.e.,, —1) then the computer has a marker on the
center square. If Square[3,3] contained the value
Human (i.e., 1), then the human has a marker on
the lower right corner of the board.

Overall Flow of the Game
There are five main sections in this program:

1. Startup—Initialize the variables and the ar-
ray, get the player’s name, find out who gets
to go first, and display the initial board.

2. Computer Move Logic — This section will
make the decision of how the computer is
to move.

156

3. Display Move—After a move by either player
the board (screen) must be updated. This
section will place the appropriate marker on
the screen.

4. Human Input — This section will accept a
move from the human and check for its le-
gality.

5. Check for the End of Game—The game is
over when either the computer has won, the
human has won, or there is a tie game (no
moves left and one more for the cat’s team).

We will go over each of these major sections and
show you the portion of the program as we discuss
it. Then you can also look at the entire program
reprinted at the end of the chapter (Listing 10-5).

Initialize the Game

First let’s examine the beginning of the pro-
gram (Listing 10-3A). Immediately after the title
you see a message to the compiler (USES APPLE-
STUFF) to bring in some routines from the li-
brary. The function we use is the random number
generator which is covered in the Computer Move
section. (Don’t worry, if you aren’t using an Ap-
ple, we have an equivalent function for you. Since
one of our goals was to make this program as
transportable as possible, we try to accommodate
everyone.)

Next, we set up the global constants, types, and
variables. We've already discussed the first three
constants, and we'll get to the others when we
come to them in the program.

The User-Defined Types—The first three types
are all subrange types. Player refers to the value
a square can have, either Computer, Empty, or
Human. Qutcome refers to the stage of play in
the game, either the Computer has won, No-
Winner yet, the Human has won, or it’'s a Tie.
Index refers to the three possible elements of
each dimension of our array—the range is from
1 to 3. Finally, SetOfChar will be used to make it
easier to check the human’s responses.

The only global variable declaration we want
to look at now is Square. Here’s something we
haven’t mentioned before. We're using the sub-
range type Index in place of the LowerBound and
UpperBound. Since Index’s boundaries are 1..3,
so are the boundaries of the array.

Take a look at Listing 10-3B, the Main Program
section. We will refer to the procedures as they are
listed in this section.

Initialize—The Initialize procedure (Listing 10-
3C) is executed only once when the game is first
started. The player has the option to play the game

Listing 10-3A.

PROGRAM TicTacToe;
USES APPLESTUFF ;

(# For random number generator)

CONST Computer = -1;
Empty = @3
Human = 13
Tie = 23
MolWinner = BO;
Moved = TRUE;
NoMove = FALSE;
Screenldidth = 48;
TYPE Player = Computer..Human; (% Computer, Empty, Human #%)
Qutcome = Computer..Tie; (% Computer, NoMWinner, Human, Tie #:
Indax = 1..3;
SetOfChar = SET OF CHAR;
VAR PlayerOneflag : Player;
WinnerfFliag Qutcome;
Tabl, Tab2 : INTEGER;
Ch : CHAR;
PiayerName STRING;
Square : ARRAYLIndexl OF

ARRAY[Index] OF Player:

FirstMove,
MoveComplete,

GameQuer BOGLERAN;

again without having to re-execute the program.
We used Tabl to center the playing board on the
screen and Tab2 to place the markers on the board.
Both variables are affected by the constant Screen-
Width. If this constant is changed for a different
screen width, the display will still have a symmet-
rical appearance.

GameOver indicates whether or not the player
wants to play another game.

Get the Player’s Name — Procedure GetName
(Listing 10-3D) accepts the name from the player.
This procedure is also executed only once at the
beginning of the program. We fancied it up to pre-
pare for a few possibilities. The player’s name is
printed on the screen during the play of the game
to prompt him/her for a move. We want to make
sure that the name plus the messages will fit on
the screen. Since 32 spaces are reserved for
prompt messages, that leaves ScreenWidth — 32
spaces for the name. On a 40 character screen,
that’s only 8 spaces for a name. The maximum
name length is stored in MaxName.

After receiving the player’s name, we make a
few checks on it. The first step is to delete any
leading spaces. Next we check for a name with
less than 2 characters in it. Since we don’t know

157

of any names like that, we assume the player
wants to remain anonymous. We oblige by dub-
bing him/her ‘No Name.” Next we check to see if
the name exceeds MaxName. If it does, we ask
for a shorter name.

Game Preparation—By referring to the Main
Program section (Listing 10-3B), you’ll notice
that GamePrep, the next procedure executed (as
well as the rest of this section), is within a RE-
PEAT-UNTIL loop. This loop will allow the player
to have another go at the game after it’s over.
Look at GamePrep (Listing 10-3E). This proce-
dure sets all of the elements of Square to Empty.
If this isn’t done each time the game’s played, you
won’t get very far! We also set two status vari-
ables to their initial values.

Who Goes First? — Next, the human player
chooses who will go first (Listing 10-3F). This
procedure calls InputYN (Listing 10-3G) to get
either a ‘Y’ or an ‘N.” The value parameter (11
in this case) specifies on which line an error
message should be printed. Answer is a variable
parameter which will return the response.

After an appropriate message is printed out,
the variable PlayerOneFlag will be set to the first
player to move. ;

Listing 10-3B.

BEGIN (% Main Program *}
Initialize;
GetName;

REPEART (% Repeat
GamePrep;
WhoGoaesFirst;
InitDisplay;

loop until

IF PlayerOneFlag =
BEGIN
FirstCompMove;
Display{Computar);
EMD;

Computer THEN

REPEAT (% Main game loop
HumanMove;
Display{Human);

EndCheck;

(%
(%

display

IF WinnerFlag = NoWinner THEN
BEGIN
IF NOT FirstMove (% Check
THENM
FirstCompMove
ELSE

CompMove;

Dispiay(Computer);
EndCheck;
END;

UNTIL Winnerfliag <> Nolinner;
EndGame;

UNTIL GameOuer;
END. (% TicTacToe *%)

Now look at InputYN. First, the two sets are
initialized. We are initializing these sets here
rather than within the Initialize procedure to keep

(% Get human’s move,

(% Game’ s not over yet,
if this

(% Display the move and
(#* check for and of game %)

(% End of main game

player doesn’t want to play again *}

- repeat until end of game #)

*3

it, and *3

check for end of game *)

computer’'s turn %)
is the computer’'s first mouve %)

(% Computer’s first move %)

{*# Computer’'s subsequent mouves #*)

*)

locop %3

them as local as possible. The extra processing

time to initialize them every time this procedure
is called is negligible in this application. Next,

Listing 10-3C.
PROCEDURE Initialize:;
BEGIN
Tabl = 11 4 (ScreenMidth - 11) DIV 2; (% Used to center grid on screen *%)
TabZ 1= 1 + (ScreenMidth - 11) DIV 2; (% Used to make movaes on grid #%)

GameQuer := FALSE;
END; (% Initialize %)

(#% Initialize end of game flag *)

158

Listing 10-3D.

PROCEDURE GetMame;
(% Accept the player’'s name.
the screen space set aside for it

Make sure
in the program, check for

it will not ocverflow

teading spaces and el iminate them. *)
VAR MaxMame, Len : INTEGER:
BEGIN
MaxName := ScreenMidth - 32; (% Maximum name length = l(eftover space %)

ClearScreeaen;

Center(d,’ Welcome To The Game Of TIC-TAC-TOE!’);

REPEAT
GOTOXY(B,51;
WRITEC What' ' s your nama? ’);
READLN(P!l ayerName J);

WHILE POSC’ * ,PlayerName = 1 DO
DELETE(Pl ayerMame, 1,1);

Len := LENGTH(PIl ayerName};

IF Len < 2 THEN
PlayerMame := ’'No Name’ ;

IF Len > MaxName THEN
BEGIN
GOTOXY(3,4);

(% Dalete lsading spaces %)

(% Check for no entry *

(% Make sure name will *)
(* fit on the screen *)

WRITELNC' I can’’t remember namaes that long...’);

Clearbline(5);
END;
UNTIL Len <= MaxMame;
EMND; (% GatMName %3

this procedure continues to request an input un-
til the value in YesNo is contained in the set Yes-
NoSet. If the player entered a legal entry in lower
case (if it’s IN LowerCase), it is converted to UP-
PER case by subtracting the ordinal (ASCII)
value of ‘a’ from the ordinal value of YesNo and

then adding the ordinal value of ‘A. This new
value is then converted back to a character. This
method will work even if the host computer doesn’t
use an ASCII numbering system. Try plugging in
your own values of YesNo to see how this works.

Initialize the Display — The last initialization

Listing 10-3E.

PROCEDURE GamePrep;
(# Initialize array and flags *)
UAR i, 3 ¢ Index;

BEGIN
FGR i =1 TO 3 DO
FOR 3 := 1 TO 2 DG
Squareli, 351 := Empty;

WinnerFlag := NoMlinner;
FirstMove := NoMoue;
END;: (% GamePrep %)

(% Claear array %)

Listing 10-3F.

PROCEDURE WhoGoesFirst;
(# Find out who gets to go first %3
UAR Answer : CHAR;

BEGIN
GOTOXY(8B,8);
WRITELNC Weil, ' ,PlayerName,’ ,” J;
WRITE(® will you let me go first? I3
InputYNC1l, Answer);
WRITELN;

IF Answer = 'Y’ THEN
BEGINM
WRITELNC Why thank you, ' PiayeriMame,’, I°° 117);
WRITELN(’ remember you in my dreams!’)3
PlayerOnefFlag := Computer; (% Set first player flag #*I
END

ELSE
BEGIN
WRITELNC(’ You aren’’t giving me much of a chance!’ 2;
PlayerOneflag := Human; {% Set first player flag %)

END;

Continue;
END; (% WhoGoesFirst *)

Listing 10-3G.

PROCEDURE InputYN(Vert : INTEGER:
VAR YesNo : CHAR);
{* Procedure to accept a 'Y or ‘N before exiting, if

’ z El 2

lower case "y or 'n’ is entered, convert to UPPER case %)

VAR YasNoSat, LowerCase : SetO0fChar:

BEGIN
YasMNpoSet ::= ['Y', "y, "N, "n’ 1; (% Initialize sets *%)
LowerCase = ["a’ .. z"1;

READ(YeshNo)

WHILE NOT (YesNo IM YeshNoSet) DO
BEGIN
GOTOXY(4,Vert);
WRITE(' Please type either *Y" or "N": 7);
READ(YesNo J;
END;

IF YesNo IN LowerCase THEN (% Convert lower case letter to UPPER case
YesMo = CHR(ORD(YesNo) - ORD{’ a” }» + ORD{ &));
WRITELN;
END; (% InputYN %)

160

*)

Listing 10-3H.

PROCEDURE InitDisplay;
(#% Display the game sguares %)

BEGIN
Canteri(B,’ %% TIC-TAC-TOE #%%°);

Center(2,CONCAT(P!ayerName,’

GOTOXY(8,5);

WRITELNC’ i ! *:Tabl);
WRITELNC® 1 1 2 1 3 " :Tabl);
WRITELN{? ! ! " :Tabl);
WRITELN(' ---+~--+--~":Tabl};
WRITELNC” !) *:Tabl);
WRITELNC" 4 ¢ 5 t B 7 :Tabl);
WRITELNC’ ! ! ‘:Tabl);
WRITELN(-=--+--=+=-~~ " :Tabl1l;
WRITELNC” ! i ":Tabl);
WRITELNC® 7 1 8 ! 8’ :Tabl);
WRITELNC” ! ! ":Tabl);

END; (% InitDisplay %}

step before the game actually starts is to display
the board on the screen. This is done with proce-
dure InitDisplay (Listing 10-3H). We are using
the same Center procedure introduced in Chap-
ter 9 to center the headings. Next Tabl is used
to center the board on the screen regardless of
the screen width.

The Computer Makes a Move

Let’s say the player is feeling magnanimous
and allows the computer to make the first move.
PlayerOneFlag will be set to Computer and First-
CompMove is carried out (Listing 10-31).

The Computer’s First Move and Random Num-
bers—FirstCompMove is always executed the first
time the computer gets to move (even if the hu-
man goes first). Throughout this program we are
using what are called “flags.” These are variables
which we use to store a “game condition.” Move-
Complete is the flag we use to let the computer
know whether or not a successful computer move
has been made.

We want to give the computer a tactical advan-
tage for its first move. The first choice is the cen-
ter square. The procedure FillSquare is passed
the coordinates of this middle square (2,2). Fill-
Square checks to see if this square is Empty, if
so it:

1. Fills the square with the Computer marker.

2. Sets the MoveComplete flag to Moved.

3. Calis the nested function Convert which con-
verts the [row, column] coordinates passed

has X''s

161

I have O " g’)};

to FillSquare to a CHAR with the ’1’.)9
number value of the square (as indicated in
InitDisplay, Listing 10-3H).

4. Calls a time wasting procedure, Wait (List-
ing 10-3J), that executes a FOR loop for 8
“moments.” This pause creates the illusion
of the computer actually taking the time to
“think” before choosing its move. It can be
somewhat disconcerting to have the computer
announce its move “immediately’” after you
enter your move. People prefer playing with
a computer that appears to have ‘“human-
like” qualities rather than one which can
do things better than they can.

5. Displays the message saying where the com-
puter will move.

6. Calls Wait again so the computer doesn’t
seem to think of a move and place its marker
at approximately the same instant.

When FillSquare is finished with the center
square, FirstCompMove checks the MoveComplete
flag. If the center square wasn’t filled (this will
happen if the human chose to go first and also
chose the center square) the computer’s second
choice will be one of the corner squares. Rather
than choosing the same square each time, we are
using a “random number generator” to choose a
random corner. Apple Pascal has a funetion called
RANDOM which we can use if we say USES AP-
PLESTUFF at the beginning of the program.
This function returns an INTEGER value be-
tween 0 and 32767 inclusive. The values RAN-

Listing 10-3I.

PROCEDURE FillSqguare(r, c : IndexJ);
(% Chaeck if computer’'s move can be compieted,
if so then fill the "square" #%)

FUNCTION Convert @ CHAR;
(% Convert from r,c coordinates to CHAR to be used in Display #)

UAR Temp : INTEGER;

BEGIN
Temp = (r - 1) % 3 + cj;
Conuert := CHR(Temp + ORD(B));

END; (% Conuvert *)

BEGIN
IF Sgquarelr,cl = Empty THEMN (% If chosen square is empty, %)
BEGIN (% then fill it with Computer *)
Sguarelr,cl := Computer;
MoveConplete := Moved: (# Set flag to indicate move made %)
Ch := Convert;
Wait(81; (% Make it look like the computer is thinking %)

GOTOXY(Screaenlidth - 16,17):
WRITE(' I will move to 7 ,Chil;
Wait(57;
END;
END; (% FillSguare %)

PROCEDURE FirstCompMove;
(% Special procedure for computer’s first move %)

UArR RandomRow, RandomColumn : Index;
BEGIN
MoveComplete := NoMowe;
FitlSquare(2,23; (% Try center sguare first %)

IF NOT MoveComplete THEN (% If center square is filled, #%)
BEGIN (% try a random corner next. #)
RandomRow := (RANDOM MOD 2) % 2 + 1;
RandomColumn := (RAMDOM MOD 2} % 2 + 1;
FiliSquare(RandomRow, RandomColumn);
END;

Firsttove := Moved; (% First move is complete %1
END; (*# FirstCompMove #%)

DOM produces appear to be random (called RandomNumber := (RANDOM MOD n) 4 1;
pseudo-random) because they are uniformly dis-
tributed and the sequence of numbers doesn’t re-
peat for a very long time if at all (however, the
same sequence *Wlll be generated whenever this * There is an Apple procedure called RANDOMIZE
program is run*). To get a random number from for starting the random number generator in a “random”
1 to n, use the following formula: place (Apple Pascal Reference Manual, p 181).

To get a random number from a to b use this for-
mula:

162

Listing 10-3J.

PROCEDURE Wait{Time INTEGER);
(% Procedure to create a pause %1
CONST Delay = 288;
VAR i : INTEGER;
BEGIN

FOR i = 1 TO Time * Delay DO;
END; (% bait #)
END; (% Wait %)

RandomNumber := (a 4+ RANDOM MOD (b — a 4 1));

In our program we want either a 1 or a 8 (not a
2) so we generate a number from 0 to 1, multiply
this by 2 (now we have 0 or 2) and add 1 (now
we have 1 or 3). The values passed to FillSquare
will be either (1,1), (1,3), (8,1) or (8,3)—the
four corners of the board.

If your Pascal doesn’t have a random number
generator, you may use the function* in Listing
10-4 on page 171.

This function will return a value between 0 and
one less than the parameter Range—if Range is
100 the values will be from 0 to 99. The global
variable Seed should be initialized to 1.23456 in
the Inmitialize procedure. Use a parameter of 2
when calling this function in our program:

* This function is based on a function by Kenneth
Bowles, Microcomputer Problem Solving Using Pascal,
page 2b7.

RandomRow := Random(2) x 2 4 1;

There are better methods for generating random
numbers, however, this one is fine for this appli-
cation.

When the computer chooses a corner square we
know it will be a valid move—there is no way that
any of these corners can be occupied :

1. If the computer goes first, it takes the center
square.

2. If the human goes first and doesn’t take the
center square, the computer takes the center
square.

3. If the human goes first and takes the center
square, the rest of the board will be open, so
any computer move has to be valid.

The last thing FirstCompMove does is to set the
FirstMove flag to Moved so this procedure won’t
be executed again in the current game.

Update the Board

Once the computer has moved, we need to up-
date the board. The next procedure called in the
Main Program section (Listing 10-3B) is Display
(Listing 10-83K). A value is passed to the proce-
dure indicating whether to place a computer
marker or a human marker on the board.

The global variable Ch will contain the “num-
ber” of the square to move to. We use this variable
as the case-selector in a CASE statement to posi-
tion the cursor at the approximate screen coordi-

Listing 10-3K.
PROCEDURE Display(Mouve : Player)
(# Procedure to place “"marker” on appropriate sguare.
S5elector is the CHAR entered by human or computer. %)
BEGIN
CASE Ch OF
‘17 GOTOXY(TabZz, B); (% TabZ is offset calculated *%3
*2": GOTOXY(Tab2 + 4,63; (#% in procedure Initialize *)
'3 GOTOXY(Tab2 + 8,61); (% based on Screenlidth. *)
T4 GOTOXY(TabZ, 18);
'S5 GOTOXY(Tab2 + 4,18);
‘B’ GOTOXY(TabZ + B8,181);
‘T 1 GOTOXY(Tab2z, 14);
‘B GOTOXY(TabZ + 4,14);
"9 GOTOXY(TabZ + 8,141);
END; (% CASE %)
IF Move = Human THEN MRITE(¥’ 2} (% Place marker at x,y *3

ELSE WRITEC" O)3

END; (% Display %)

163

nates. Tab2 contains the horizontal offset based on
the current ScreenWidth. Once the cursor is posi-
tioned, the actual parameter Move is checked to
see whether to write an ‘X’ or an ‘O’.

The Human Moves

Referring back to the Main Program section
(Listing 10-3B) you’ll see that we now enter into
the “main game loop.” We will continue in this
loop until one of the players has won or there is
a tie. It’s now the human’s turn to move. Look at
procedure HumanMove (Listing 10-3L).

Here are the steps for this procedure:

1. Clear the line reserved for error messages us-
ing the ClearLine procedure (also in Listing
10-3L). This procedure just writes Secreen-
Width spaces at the line indicated.

2. Display prompt and read a character.

3. Trap bad input—if the character entered is
a legal digit (IN NumberSet) then go to the
next step, otherwise go back to Step 2.

. Clear the prompt message from the screen.

. Convert the character entered from a CHAR
digit (’1’..’9’) to row and column coordinates
(i,j).

6. Trap bad move (see if the human’s cheating)

Ot

164

—if Square[i,j] is Empty then fill it with
the Human marker and set the local Good-
Move flag to Moved, otherwise print an error
message and go back to Step 2.

7. Don’t exit the loop until a GoodMove has
been made.

Next we update the screen (Main Program sec-
tion) using the same Display procedure, only this
time we tell it to place the human’s marker.

Check for the End of Game

The next step is to call procedure EndCheck
(Listing 10-3M) to see if we have a winner or if
anyone can move again.

This procedure contains two nested procedures
—one to check for a win and one to check for a
tie. WinCheck is executed first. Since we are using
the value —1 for the computer’s markers and 1
for the human’s markers, we can locate a win if
any of the possible “three-in-a-row” lines add up
to either a —3 (computer win) or 3 (human win).
The local variables Diagl and Diag2 hold the sum
of the two diagonal lines, Row stores the sum of
the three rows, and Column stores the sum of the
three columns. A nested FOR loop is used to check
each of the three rows and columns.

Listing 10-3L.

PROCEDURE ClearbLine(VUert : INTEGER);

BEGIN

GOTOXY(8,Vert);
WRITELNC® ’ :Screenlidth); (% Fill line with spaces - clear line %)
END: (% ClearLine %}

PROCEDURE HumanMouve;
(% Human's turn to make a move %)

VAR i, 3 : Index;
Temp : INTEGER;
NumberSet : SetOfChar;
GoodMove @ BOOLEAN:

BEGIN

NumberSet := ["1°..°9 1;
GoodMove := NoMouve;
ClaarLine(19);

REPEART
GOTOXY(B, 17 WRITE(Your move, ' ,PlayerName,’ : ');
REAQD(Ch 3;
IF Ch IN NumberSet THEN (% Check for legal character %)
BEGIN

Clearline(17);

Temp := ORD(Ch) - ORD(’ 8); (% Convert character to *}
i = ({Temp - 1) BIV 3} + 1; (% row and column coordinates #%)
IF Temp MOD 3 = 8
THEN
J =3
ELSE

j = Temp MOD 3;

IF Squareli, j1 = Empty THEN (# If chosen square is empty, *)
BEGIN (% then fill it, set move flag %}
Squareli, j1 = Human;
GoodMove := Moved:
END

ELSE
BEGIN
GOTOXY(8,191);
WRITELN(Sorry, that sgquare is already filled.’);
END;

END;
UNTIL GoodMoves: (% Don’t exit until valid move is made %)
END; (% HumanMove %)

165

Listing 10-3M.

PROCEDURE EndChack:
(% Check for a win or a tie %)
VAR i, 4 @ Index;

PROCEDURE WinCheck:
{% Check for win %)
UAR Diagl, Diag2, Row, Column : INTEGER;

BEGIN
Diagl := B; Diag2 := 8;
FOR i := 1 TO 3 DO
BEGIN
Diagl := Squareli,il + Diagl: (% Add diagonals #%)

Diag?2 := Squareli,4 - il + DiagZ:
Row := 8; Column := B;

FOR 4 := 1 TO 3 DO
BEGIN
Row := Sguarelj, il + Row; (% Add rows and columns %)}
Column = Squareli, jl + Column;
END; (% FOR 3 %)

IF (Diagl = -3) OR (DiagZ2 = -32) OR (Row = -3) OR (Column = -3} THEN
BEGIN
WinnerFlag := Computer; (* If any “"lines” total to -3, &3}
EXIT(EndCheck); (% the computer is the winner. %)
END;

IF (Diagl = 3) OR (Diag2 = 3) OR (Row = 3} OR (Column = 3) THEN

BEGIN
WinnerFlag := Human; (% If any *lines” total to +3, #*)
EXIT(EndCheck); (% the human is the winner. %)
END;

END; (% FOR i #%)
END; (% WinCheck #%)

PROCEDURE TieChack;
(# If any square is empty, then the game is not ouver yet %)
BEGIN

FOR i := 1 TO 3 DO

FOR 5 := 1 70 3 DO
IF Squareli, jl = Empty THEN EXIT(EndCheck };

WinnerFlag := Tie; (% No empty squares, cat’'s game %)}
END; (% TieCheck %)

BEGIN (% EndCheck %)
WinCheck; (* If no winner yet, then check for a tie %}
TieCheck;

END; (% EndCheck %)

166

The EXIT Procedure—After each row and col-
umn is added up, we check for a win. If we find
one, we set the WinnerFlag to the appropriate
value and execute a special UCSD intrinsic proce-
dure called EXIT (not found in standard Pascal).
This procedure allows us to prematurely exit
from any procedure by naming it as the param-
eter. By using EndCheck as the parameter, we exit
both WinCheck and EndCheck and return to the
Main Program section. By using WinCheck as the
parameter, we would exit only one level to the
main section of EndCheck. When using EXIT,
make sure you use the name of a valid and acti-
vated procedure. It’s possible to use EXIT to force
a program to terminate by using the program
name as the parameter, or the word PROGRAM
(EXIT(PROGRAM);). However, we don’t recom-
mend this technique (it’s sloppy!). Instead, find a
way to let your program terminate “naturally.”
If you can write your program without using
EXIT then do so—it’s easy to become lazy and use
this command when other methods would do just
as well. Many versions of Pascal don’t have an
EXIT, so if you want your programs to be trans-
portable, don’t use it.

If no wins are found, the TieCheck procedure
is executed. As soon as TieCheck discovers an
Empty square, it exits EndCheck. If it finds each
square filled, WinnerFlag is set to Tie.

If your version of Pascal doesn’t have the equiv-
alent of EXIT you can rewrite this section of the
program and omit the EXITs. Change the line
calling TieCheck to:

IF WinnerFlag = NoWinner THEN TieCheck;

You could use a FoundEmpty flag in TieCheck
if an empty square was discovered.

The Computer’s Move Again

Back in the Main Program section we check
the status of WinnerFlag (a winner is highly un-
likely after only two moves). If there’s NoWinner
then the computer moves. If the computer has not
yet made a move (IF NOT FirstMove) then First-
CompMove is executed, otherwise, CompMove is
executed.

The Computer’s Strategy—In order for the com-
puter to make an intelligent move, it must be able
to analyze the current board array and decide the
best move to make at the time. The computer pro-
gram must imitate the way a human would de-
cide where to move. If you examine your thought
process carefully while playing Tic-Tac-Toe, you
can discover that a certain series of steps, almost

167

like a formula, is followed. This formula is called
an “algorithm.” Let’s identify the specific mental
steps you might take to make a good Tic-Tac-Toe
move by coming up with all possibilities and then
prioritizing them. If the conditions aren’t met in
one of the steps indicated below, proceed to the
following step:

1. Is there any line (row, column, or diagonal)
that has two of your markers in it and the-
third square empty ? If so, then fill it to win.

2. Is there any line which has two of the oppo-
nent’s markers in it and an empty square in
the line? If so, fill it to block the opponent
from winning. If there is more than one line
like this, take either one because you can’t
win unless your opponent is daydreaming.

3. Is there any line with one of your markers
and two empty squares? If so, fill one of the
squares to develop a potential winning line.

4. Is there any line with one of the opponent’s
markers in it and two empty squares? If yes,
fill one of the squares to block.

5. If you’ve come this far, then find an empty
square and fill it with your marker.

Now to implement these steps in Pascal we must
find a way to determine each of these five condi-
tions and, based on what we find, fill the respec-
tive empty square. Our solution is to find the
unique mathematical sum which represents each
of our five steps. For example, let’s say we have
a line meeting the conditions of Step 1 for the
computer, that is, the computer has two markers
in a line and there is one open square. If we add
the value of these two markers we get —2. The
only way we can get the sum of the elements in
a line to add up to —2 (assuming the computer’s
markers have the value of —1 and the human’s
markers the value 1) is for two squares to con-
tain —1 (Computer) and one square to contain 0
(Empty). Thus we can loop through all the lines
on the board (three rows, three columns, and two
diagonals) and if the computer finds any line
equal to —2, we can have it fill the empty square
in that line.

Look at Step 2. It’s identical to Step 1 except
that we are looking for a sum of 2 so the computer
can block a potential loss. The only way we can
get a line to add up to 2 is if two squares are 1
(Human) and one square is 0 (Empty).

The third step involves searching for a sum of
—1. This condition could occur if two squares were
empty and one square was a —1, or it could hap-
pen if two squares were —1 and one square was
+1. We can still use the same process, except we

Listing 10-3N.

PROCEDURE CompMove;

(% Select computer’'s moue %)
UAR Loop, LineSum : INTEGER:
i, J : Index;

FPROCEDURE RowCheck
(% Check the rows,
BEGIN

: (% Sae

(% RowCheck #)

END;

PROCEDURE ColumnChecks
(* Chaeck the columns,
BEGIN

if LineSum found then try to fill

if LineSum found then try to fill

: (* See complete

END: (% ColumnCheck #)

PROCEDURE DiagCheck;
(% Check the diagonals,
BEGIN

END; (% DiagCheck %)
BEGIN (* CompMove *)

Loop 1;
MoveComplete

:= NoMove;

if LineSum found then try to fill

(% See complete

listing,

a square %}

listing 18-3o0 *%)

a square %)
listing, 1B-3 %)
a sguare %]

18-3 %)

REPEART

CASE Loop OF (% Check possible conditions by priority #)
1: LineSum := -2; (% Two computer markers in a line - a win %)
2: LineSum := 2; (% Two human makers in a lina - block win %)
3: LineSum = -1; (% Possible one computer marker in a line %)
4: LineSum := 13 (¥ Possible one human marker irn a |ine *)
5: LineSum = B; (% Possible opan line *3

END; (% CARSE #*)

RowCheck; (% Check for LineSum in Rows, Columns, then Diagonals ¥}

ColumnCheck;

DiagCheck;

loop := Loop + 1;

UNTIL Loop = B:
END;: (% CompMove #%3}

must continue searching if the computer can’t
find an empty square to fill.

The fourth and fifth steps follow the same logic
process as Step 3. Add the values and then check
for an empty square.

In summary, we want a routine that allows us
to check sequentially through each of the five steps

168

of the algorithm, looking for each of the condi-
tions (a sum in a line of -2, +2, -1, +1, or 0)
and make a move based on the first one satisfied.
We wrote three separate procedures—one each
to check the rows, the columns, and the two diag-
onals, We call each of these procedures from
within a loop which cycles as many as five times,

Listing 10-30.

PROCEDURE RowCheck:
(% Check the rows,
UAR Row : INTEGER;

PROCEDURE RowOpen;
BEGIN
FOR i :=
BEGIN
FillSgquare(i, jJ;

1 70 3 DO

if LineSum found then try to fill

a square %)

IF MoveComplete THEN EXIT{(CompMovel;

END;

END; (# RowOpen %)

BEGIN (% RowCheck #)

FOR 5 := 1 T0 3 DO
BEGIN
Row = 8;
FOR i =1 TO 3 DO
Row := Squareli, i1 + Row:;
IF Row = LineSum THEN RowOpen;
END; (% FOR j %)

END; (% RowCheck %)

each time looking for a different LineSum value.
Here is the basic structure of procedure Comp-
Move (Listing 10-8N). Look at the main section
at the end of this procedure.

First we initialize the Loop counter and the
MoveComplete flag. We next begin cycling
through the loop, setting LineSum to a different
value each time. Once LineSum is set, we execute
in order RowCheck, ColumnCheck, and Diag-
Check. If the value in LineSum is discovered
within any of these procedures and an open square
is found, then CompMove is exited. Here is pro-
cedure RowCheck (Listing 10-30).

This procedure increments through each row
and checks if the sum of the squares in that row
adds up to LineSum. If they do, then the procedure
nested within RowCheck is executed. This proce-
dure, RowOpen, checks if there is an open square
in the row now being checked by calling Fill-
Square (up to three times) and passing it the co-
ordinates of each square in that row. If FillSquare
was successful in making a move, then MoveCom-
plete has been set to Moved (TRUE) and Comp-
Check is excited. Procedures ColumnCheck and
DiagCheck are essentially the same as RowCheck.

As before, the screen is updated with the com-
puter’s move (Display(Computer);), and End-
Check checks for a win or a tie.

If the game is not yet over (WinnerFlag <>

169

NoWinner is FALSE) then the main game loop
continues. When the game is over, the procedure
EndGame (Listing 10-3P) is executed. This pro-
cedure will blink a win or tie message on the
screen using the nested procedure Flash. Then it
will ask if the player wants to play again with
InputYN. If so, the main loop cycles again (Game-
Over is still set to FALSE) and GamePrep is
called to reinitialize the array and flags. Other-
wise, the program GameOver is set to TRUE and
the program ends.

Here is how the game looks on the screen after
the computer moves first:

** TIC-TAC-TOE **

Steven has X's | have O's
! l
1 ! 2 ! 3
! |
- - - _|_ - & = + - = =
! |
4 ! (o] ! 6
! |
- & - + - - - + - . -
1 !
7 ! 8 ! 9
! !
Your move, Steven: I will move to 6

Listing 10-3P.

PROCEDURE EndGame;
(# End of game wrap up %)
VAR Again : CHAR;

PROCEDURE Flash(Message : STRING);
(% Procedure to flash message on and off %)
CONST Times = 4;
Line = 19;
VAR i : INTEGER;
BEGIN
FOR i z= 1 TO Times DO
BEGIN
ClearLine(Line);
Wait(43;
Center(Line, Message]l;
Wait(4);
END; (# FOR i %)
END; (% Flash %)

BEGIN (% EndGama %)
ClearLine(13);

CASE MWinnerFiag OF
Computer @ Flash(%% I HNON %");
Human : Flash(’ % YOU' ' RE THE WINNER!! %%’);
Tie : Flash(' - TIE GAME -’);

END: (% CASE %)

WRITELN;

WRITE! Would you {ike to play again? ’ }1;
InputYMN(22, Rgainl;

ClearScreans

IF Again = "N THEN (# Exit the program if player
BEGIN (% doesn’ t want to play again
GameQuer := TRUE; (% Set end of game flag %)
Center(5,’ Bye for now...’);
END;
END; (% EndGame #%)}

170

)
%)

Here is what the screen looks like after the last
move of a tie game:

** TIC-TAC-TOE **

Steven has X's | have O's
! |
X ! (o] | (o]
| !
.--+--.+.-.
! !

(o] l (o} l X
] 1
---+---+-_-
|]

X | X ! (o]

|

I will move to 9
- TIE GAME -

Would you like to play again?

It is not too difficult to beat the computer if you
go first, but the best we could do when we let the
computer go first is a tie! Maybe you can do better.

Listing 10-5 contains the complete TicTacToe
program, which was introduced in sections in
Listings 10-8A through 10-3P.

Listing 10-4.

FUNCTION Random(Range : INTEGER): INTEGER;
(# Function to generate a pseudo-random number between B and Range #%)

BEGIN
Seed = Seed % 27.1828 + 31.4159;
Seed = Seed - TRUNC(Seed};

Random := TRUNC(Seed * Range);
END; (% Random %)

171

Listing 10-5.

(% : *)
(% . *)
(% Program Language: PASCAL *)
(% Program Title: Tic-Tac-Toe %)
(# Subtitle: Using Arrays, Sets, and sub-range *)
(% types in a "practical”™ example. %3
(% *)
(s AUTHOR: David Fox %)
(= Basad on program by Mitch MWaite *3
(* %)
(% Program Summary: Have fun trying to ocutwit the *%)
(s computer in a game. : *)
(s *)
(== *)

PROGRAM TicTacToe;

USES APPLESTUFF; (% For random number generator #%)
CONST Computer = -1;

Empty = B3

Human = 13

Tie = 23

Nolinner = 8;

Moved = TRUE;

NoMove = FALSE;

ScreenWidth = 48;

TYPE Piayer

Computer..Human; (% Computer, Empty, Human %)

Outcome = Computer..Tie; (% Computer, NoWinner, Human, Tie %)
Index = 1..3;
SetOfChar = SET OF CHAR;
UAR PlayerOnefFlag : Player;
Winnerflag : Qutcome;
Tabl, Tab2 : INTEGER;
Ch : CHAR;
PiayeriName : STRING;
Square : ARRAYLIndex] OF

‘ ARRAYLIndexl OF Player;
FirstMoue,
MoveComplete,
GameOQuear : BOOLEAN;

PROCEDURE ClearScreens
BEGIN

PARGE(QUTPUT);
END; (% ClearScreen %)

172

PROCEDURE Continue;

BEGIN
GOTOXY(8,22); WRITE(' Press RETURN to continuae: ‘ J;
READLN; (% Note that READLN can be used without a parameter #)

ClearScrean;
END; (% Continua %}

PROCEDURE Center(VertPos : INTEGER;

Sentence : STRING);
(# Procedure to center a string at line UertPos %)
UAR Len : INTEGER;

BEGIN

Len := LENGTH(Sentence)};

GOTOXY(8,VertPos);

WRITELN(Sentence:Len + (Screendidih - Len) DIV 2);
END; (% Center %) ‘

PROCEDURE Clearline(VUert : INTEGER);

BEGIN A
GOTOXY(B,Vert);
WRITELMNC® “ :Screenbidth); (% Fill line with spaces - clear line #%)

END; (# ClearlLine %)

PROCEDURE MWgit(Time : INTEGER?:;
(*# Procedure to create a pause %)
CONST Delay = 200;

VAR i : INTEGER;
BEGIN

FOR i := 1 TO Time % Delay DO;
END;: (% Wagit %)

PROCEDURE Initial ize;

BEGIN
Tabl = 11 + (Screenkidth - 11) DIV 2; (% Used to center grid on screen #)
TabZ := 1 + (ScreenWidth - 11} DIV 2; (% Used to make moves on grid)

GameOver := FALSE; (% Initialize end of game flag %)
END; (% Initialize %)

173

PROCEDURE GetMamea;

(% Accept the player’s name. Make sure it will not overflow
the screen space set aside for it in the program, check for
leading spaces and el iminate them. *)

UAR MaxMama, Len : INTEGER;:

BEGIN

MaxMName := ScreenMlidth - 32; (% Maximum name length = leftover space %)
ClearScreen;

Center(B, Welcome To The Game OFf TIC-TAC-TOE!’);

REPEAT
GOTOXY(B,57; :
WRITEC’ What’ ' s your name? *);
READLN(Pl ayerName);

WHILE POS(’ ‘ ,PlayerMName) = 1 DO :
DELETE(PlayerNamea, 1,133 (% Delete leading spaces $)

Len := LENGTH(PlayerMName};

IF Len < 2 THEN (% Check for no entry #)
PlayerName := “No Name’ ;

IF Len > MaxName THEN (% Make sure name will %)
BEGIN (% fit on the screan *)

GOTOXY(9,41;
WRITELNC' I can’’t remember names that long...” J;
ClearLine(51};
END;
UNTIL Len <= MaxNMName;
END; (% GetMName #}

PROCEDURE GamePrep;
(% Initialize array and flags %)
VAR i, 4 ¢ Index;

FOR i := 1 TQO 3 DO
FOR 3 =1 TO 3 DO
Squareli, j1 = Empty; (% Clear array %}

WinnerFlag := NolWinner;

FirstMove = MNoMowve;
END; (% GamePrep *%)

174

PROCEDURE InputYN{(Vert : INTEGER;
VAR YesNo : CHAR):
(# Procedure to accept a ‘Y or ‘N before exiting, if

’ ’ ’ z

lower case 'Yy’ or ‘n’ is entered, convert to UPPER case %)

VAR YesNoSaet, LowerCasa : SetOfChar;

BEGIN
YesNoSet = ['Y¥Y', "y, "N, "n"1; (% Initialize sets %)
LowerCase = ['a'.. 2" 1;

READ(YesNo);

WHILE NOT (YesNo IN YesNoSet) DO
BEGIN
GOTOXY(4,Vart);
WRITE(’ Pl{ease type aeither "Y" or "N": ');
READ(YesNo);
END;

IF YesNo IN LowerCase THEN (% Convert lower case letter to UPPER case %)

YaesNo := CHR(ORD(YesMNo) - ORD(' a’)} + ORDC A’ });
WRITELN;
END; (% InputYN %)

PROCEDURE WhoGoesFirst;
(# Find out who gets to go first %)
VAR Answer : CHAR;

BEGIN
GOTOXY(@3,8);
WRITELNC Well, ’,PlayerMama,’ ,’);
WRITEC(" will you let me go first? * 2;
InputYN(1l, Answer);
WRITELN;

IF Answer = 'Y THEN
BEGIN
WRITELNC® Why thank you, ° ,PlayerMame,’, I'°I11’);
WRITELNC remember you in my dreams!’);

PlayerOneFlag := Computer; (% Sat first player flag %)
END
ELSE
BEGIN
WRITELNC(' You aren’’t giving me much of a chancel’);
PlayerOneFlag := Human; (% Sagt first player flag *}
END;

Continues;
END; (% WhoGoesFirst %)

175

PROCEDURE InitDisplays;
(% Display the game sguares %)

BEGIN
Centear(8,’ %% TIC-TARC-TOE #*%');

Centar(2, CONCAT(PlayerName,” has X' ’'s I have O'’'s’ 2);
GOTOXY(8,5);

WRITELNC’ ! i *:Tabl);
WRITELNC® 1 'V 2 1+ 3 ":Tabl);
WRITELNC’ 1t ‘:Tabl);
WRITELMN(® - --+--- +---":Tabl);
WRITELNC” ! ! * :Tabl);
WRITELNC(® 4 t 5 | B ' :Tabl);
WRITELNC’ { ! ‘:Tabl);
WRITELNC® ---+---4+--~":Tabl)};
WRITELMNC’ ! ! *:Tabl);
WRITELNC® 7 1 B8 ! 9 ' :Tabl);
WRITELN(’ ! ! *:Tabl};

END;: (# InitDisplay %)

PROCEDURE Display(Move : Player):
(% Procedure to place "marker® on appropriate square.
Selector is the CHAR antered by human or computer. %)

BEGIN

CASE Ch OF
1°: GOTOXY(Tab2, B); (Tab2 is offset calculated #}
2 GOTOXY(TabZ + 4,86); (* in procedure Initialize *)
'3 GOTOXY(Tab2 + 8,6); (% based on Screenlidth. *}
*4' 1 GOTOXY(TabZ, 183;
‘5 GOTOXY(TabZ + 4,10813;
‘6 1 GOTOXY(Tab2 + 8,18);
' GOTOXKY(Tab2, 143;
'8 GOTOXY(TabZ + 4,143
"9 GOTOXY(TabZ + 8,14);

END; (% CASE #%)

IF Move = Human THEN WRITE(’ X)) (% Place marker at x,y %)}
ELSE WRITE(' O J;
END; (% Display #1

178

PROCEDURE FiflSgquarel(r, ¢ ¢ Indax);
(% Check if computer’'s move can be completed,
if so then fill the "square®” %)

FUNCTION Convert : CHAR;
(# Convert from r,c coordinates to CHAR to be used in Display %)
UAR Temp : INTEGER:

BEGIN .
Temp = (r - 1) % 3 + c;
Convert := CHR(Temp + ORD(’ B’));

END; (% Convert %}

BEGIN
IF Sgquarelr,c]l = Empty THEN (% If chosen square is empty, $)
BEGIN (% then fill it with Computer %}
Squarelr,cl := Computer;
MoveComplete := Moved: (% Set flag to indicate move made %}
Ch := Convert;
Wait(81; (% Make it look !ike the computer is thinking #)

GOTOXY(ScreanlWidth - 16,17);
WRITE('I will move to ‘,Ch);
Wait(5);
END;
END; (% FillSquare %)

PROCEDURE FirstCompMoue;
(% Special procedure for computer’'s first move *)
UAR RandomRow, RandomColumn : Index;

BEGIN
MoveComplaete := NoMoue;

FillSquare(2,27; (% Try center square first %)

IF NOT MoveComplete THEN (% If center square is filled, %)
BEGIN (% try a random corner next. %)
RandomRow := (RANDOM MOD 2) % 2 + 1;
RandomColumn := (RANDOM MOD 2) % 2 + 1;
FillSquare(RandomRow, RandomColumn);
END;

FirstMove := Moved; (% First move is complate %)
END;: (# FirstCompMova #%)

PROCEDURE CompMove;

(% Selact computer’'s move %)

UARR Loop, LineSum : INTEGER;
i, 3 ! Index;

177

PROCEDURE RowCheck:

(# Check the rows, if LineSum found then try to fill

UAR Row : INTEGER:;

PROCEDURE RowOpen;
BEGINM
FOR i := 1 TO 3 DO
BEGIN
FitlSquare(i, j);
IF MoveComplete THEN EXIT{CompMove);
END;
END; (% RowOpen #)

BEGIN (% RowChaeck #%)
FOR j := 1 TO 3 DO
BEGIN
Row 1= 83

1 TOo 3 DO
= Squareli, j1 + Row:

-
Q
A
-
[

IF Row = LineSum THEN RowCpen;
END; (% FOR ; %)
END; (% RowCheck %)

PROCEDURE ColumnCheck;

a square %)

(% Check the columns, if LineSum found then try to fill a square

UAR Column : INTEGER;

PROCEDURE ColumnOpen;
BEGIN
FOR 5 == 1 TO 3 DO
BEGIN '
FillSquare(i, j};
IF MoveComplete THEN EXIT(CompMovel;
END;
EMND; (% ColumnOpen %)

BEGIN (% ColumnCheck #)

FOR i := 1 TO 3 DO
BEGIN
Column := 8;

FOR 3 := 1 TO 3 DO
Cotumn := Squarefli, j1 + Column;

IF Column = LineSum THEN ColumnOpen:

END; (% FOR i #)
END; (# ColumnCheck #)

178

%)

PROCEDURE DiagCheck;

(% Check the diagonals, if LineSum found then try to fill

VAR Diagl, Diag2 : INTEGER:

PROCEDURE DiaglOpen:
BEGIN
FOR i := 1 TO 3 DO
BEGIN
FillSquarel(i,il;
IF MouveComplete THEN EXIT(CompMovel;
END; (% FOR i %)
END; (% DiaglOpen #%)

PROCEDURE Diag20pen;
BEGIN
FOR i == 1 TO 3 DO
BEGIN
FillSquarae(i, 4 - i};
IF MoveComplete THEN EXIT(CompMove);
END; (% FOR i #)
END: (% DiagZ20pen %)

BEGIN (% DiagCheck)
Diagl = B; Diag2 := 8;

FOR i == 1 70 3 DO
BEGIN
Biagl Squareli, il + Diagl;
Diag2 := Squarefli, 4 - il + Diag?Z2;
END; (% FOR i %)

IF Diagl = LineSum THEN DiaglOpen;

IF Diag?2 = LineSum THEM Diag20pen;
END; (% DiagChack %)

BEGIN (% CompMove %)
Loop = 1;

MoveComplete := NoMove;

REPEAT

a sgquare

CRSE Loop OF (% Check possible conditions by priority

*3

*)

1: LineSum
Z2: LineSum
3: LineSum
4: LineSum
5: LinaSum
END; (% CASE =

NP T T VI LT

i

]
® e = NN

ME e WA g Wk

(%
(%
(%
(%
(%

Two computer markers in a line - g win %)
Two human makers in a line - block win %)
Possible one computer marker in a line %)
Possible one human marker in a line *)
Possible open line *)

179

RowCheck; (% Check for LineSum
ColumnCheck;
DiagChecks

Loop := Loop + 1;

UNTIL Loop = B;

END;

(% CompMove *)

PROCEDURE HumanMove;
(% Human's turn to make a mova %)

URR i, : Index;
Temp : INTEGER;
NumberSet : SetQfChar;
GoodMove : BQUOLEAN;

BEGIN

NumberSet :=
GoodMove :=

'y ..” 9 1;
NoMove;

ClearbLine(19);

REPEAT
GOTOXY(D, 17); WRITE(' Your move, ’ ,PlayerMName,’ : * J);

END;

READC(Ch);

IF Ch IN NumberSet THEN
BEGIN
ClearLine(17);

Temp := ORD(Ch} - ORD(' @);
i = ((Temp - 1) BIV 31 + 1;
IF Temp MOD 3 = 8
THEN
J =3
ELSE
4§ = Temp MOD 3;

IF Sguarefi, j1 = Empty THEN
BEGIN

Squareli, ;]

GoodMove
END

:= Human;
Moved:;

ELSE
BEGIN
GOTOXY(4, 193;

in Rows,

(% Check for

Columns, then Diagonals #%)

legal character *J

(% Convert character to %3
(% row and column coordinates %)

(# If chosen square is empty, #%)
(% then fill it, set move flag %)

WRITELN(’ Sorry, that square is already filled.’);

END;
EMD;
UNTIL GoodMouves
(% HumanMove %}

(% Don't exit until

val id move is mada %)

180

PROCEDURE EndCheck;
(# Check for a win or a tie %}
UAR i, 53 : Index;

PROCEDURE WinCheck:;
(% Check for win %)

VAR Diagl, DiagZ2, Row, Column : INTEGER;
BEGIN
Diagl := 8; Diag2 := B8;

FOR i := 1 T0 3 DO
BEGIN
Diagl := Squarali,il + Diagl; (% Add diagonals %)
Diag?2 := Squareli,4 - il + Diag2;

Row := B; Column := B;

FOR 3 := 1 TO 3 DO
BEGIN
Row := Squarelj, il + Row; (% Add rows and columns #)}

Column := Squareli, jl + Column;
END; (% FOR ; %)

IF (Diagl = -3) OR (Diag2 = -3) OR (Row = -3) OR (Column = -3J) THEN
BEGIN
WinnerFlag := Computer; (%2 If any "lines” total to -3, #)
EXITC(EndChack }; (% the computer is the winner. %}
END;

IF (Diagl = 3) OR (DiagZ = 3} OR (Row = 3) OR (Column = 3) THEN

BEGIN
WinnerFlag := Human; (% If any "lines” total to +3, *)
EXIT(EndCheck); (% the human is the winner. %)
END;

END; (% FCR i %)
END; (% WinCheck %)

PROCEDURE TieCheck;

(% If any square is empty, then the game is not over yet %)
BEGIN

FOR i := 1 TO 3 DO

FOR 3 := 1 T0 3 DO
IF Squareli, jl = Empty THEN EXIT(EndCheck);

WinnerFlag := Tie; (% No empty squares, cat’s game %)
END; (% TieCheck %)

BEGIN (% EndCheck %)

WinCheck; (% If no winner yet, then check for a tie %)
TieCheck;

END; (% EndCheck %)

181

PROCEDURE EndGame;
(% End of game wrap up %}
UAR Again : CHAR;

PROCEDURE Flash(Maessage : STRING);
(% Procedure to flash message on and off %}
CONST Times = 43
Line = 19;
VAR i : INTEGER;
BEGIN
FOR i := 1 TO Times DO
BEGIN
ClearbLine(lLine;
Wait(4);
Centaer(lLine, Messagel;
Wait(43;
END; (% FOR i %)
END; (% Flash %)

BEGIN (% EndGame %)
Clearl.ine(19);

CASE WinnerFlag OF‘
Computer : Flash(” #% I WON %%’ };
Human Flash{’ %% YOU' 'RE THE MWINNER!! %%’);

Tie Flash(' - TIE GAME -’);
END;: (* CASE %)

WRITELN;

WRITE(Would you like to play again? ’ J;
InputYN(22, Againl;

ClearScreens:

IF Again = ‘N THEN (% Exit the program if player %)

BEGIN (% doesn’t want to play again %)
GameQuar := TRUE; (% Set end of game flag %)
Canter(5,’Bye for now...’);

END;

END; (% EndGama %)

BEGIN (% Main Program %)
Initialize:s
GatMName;

REPEAT (% Repeat loop until! player doesn’t want to play again %)
GamePreaep;

WhoGoesFirst;
InitDispiay;

182

IF PlayerOneFlag = Computer THEN

BEGIN
FirstCompMove;
Display(Computer;

END;

REPEART (% Main game loop - repeat unti! end of game %)
HumanMove; (% Get human’ s mova, *)
Display(Human }; (% display it, and *)

EndCheck; (%

check for end of game %)

IF WinnerFlag = NoWinner THEN

BEGIN (% Game’s not over yet, computer’'s turn %)

IF NOT FirstMove (% Check if this is the computer’s first move %)
THEN

FirstCompMoue
ELSE

CompMoue;

(% Computer’'s first move %)

(% Computer’' s subsequent moves %)

Display(Computer);
EndCheck;
END;

(% Display the move and %)
(% check for end of game %)

UNTIL WinnerFlag <> NoWlinner; (% End of main game loop %)

EndGamé;

UNTIL GameQuer:
END. (# TicTacToe #%)

183

appendix A

Pascal’s Advantages—A Summary

Depending on your orientation and reasons for
investigating Pascal, the various features of the
language will have individual significance for you.
Generally speaking, Pascal offers the following ad-
vantages over other languages, including assem-
bly and high-level types:

1. Fasily Understood Programs. Because Pascal
is a “procedure-oriented language” and has
a rich variety of control statements, Pascal
coded programs are easier to figure out, and
are practically self-documenting. Program-
mer comments that don’t use precious space
and use of indentation and meaningful vari-
able names make Pascal programs self-ex-
planatory and an excellent choice when cre-
ating software is your main focus. Many pun-
dits predict that hybrid versions of Pascal
will become the language of the corporate
world of the future . . . leaving FORTRAN
and COBOL in the dust.

2. Manageable Maintenance. Pascal calls for a
top to bottom systematic approach to a pro-
gram—one that is clear, self evident, and
consistent. This means future programmers
will be able to chart their way through some-
one else’s Pascal project with relative ease.
Recall the “rat’s nest” analogy.

184

. Easier Control Over Development by Man-

agers. Pascal is structured so well that man-
agers can easily monitor the progress of a
project involving several programmers; the
project can more easily be broken into sec-
tions and worked on independently than if
FORTRAN or BASIC were used. No more
“I thought you were writing that subroutine”
or “What does GOSUB 10001 mean ?”’

. Superior Standardization. Compared to BA-

SIC and FORTRAN Pascal is more standard-
ized, and “extensions” are provided in a
clearer fashion to the end user. An ANSI,
IEEE, and ISO proposal exists for Pascal,
making it more international than most lan-
guages,

. Compiled. This makes for better protection

of your software, as only you have the source
code, while the end user gets object code. (Of
course, FORTRAN is compiled too, and com-
piler BASICs are fairly common.) Compiled
code means it’s faster than BASIC and uses
less memory. P-code compilers are a compro-
mise.

. Can Handle Data Structures With FEase.

Wirth went to the cutting edge with Pas-
cal’s data structuring. Lists and tables can
be manipulated with extreme ease.

appendix B

Pascal’s Bummers

No book on Pascal could be complete without
exploring the weaknesses of Pascal . . . after all,
Pascal was designed by Wirth to improve upon
the weaknesses of an earlier language (ALGOL),
so it would seem sensible to enumerate Pascal’s
limitations. Here are a few.

1.

It is more difficult to debug a Pascal pro-
gram than an interpreter BASIC program.
In BASIC, you can stop the program part-
way through, print out some variables in
the “direct mode” and then resume execu-
tion. In Pascal, you must insert tracing
WRITELN statements wherever you think
the problem might be and hope that you
catch it. (On the other hand, the compiler
catches a lot of bugs before you even exe-
cute.) You are left to find the real “tough-
ies.”

. Slow executing code if it’s a P-machine type

Pascal (compared to N-code). Plus memory
space and time lost due to run-time package
(interpreter) sitting in RAM. P-machine
code must run from RAM, and is not easily
ROMable.

. Dynamic bounds on arrays and sets are not

possible. (This is a problem only when writ-
ing library routines.) In BASIC, you can
change the size of an array in the program,
expanding it as more elements are needed.
In Pascal, the length of arrays is fixed when
the program is run.

. Random Access Files are not specified in

Wirth’s Pascal. UCSD Pascal implements
random access with the SEEK intrinsic
(not covered in this book), but other Pas-
cals may call this something else.

No EXIT statement to absolutely terminate

185

a procedure is included in Wirth’s Pascal,
but there is one in UCSD Pascal.

. No SEGMENTING’s specified in Wirth’s

Pascal, but it’s available in UCSD. Seg-
menting was implemented in UCSD Pas-
cal because in most micros the memory
capacity is limited to 64K. Segmenting al-
lows you to split a program up into seg-
ments—only one segment is in memory at
a time. The Pascal compiler provides a good
example of a segmented program. The com-
piler is so large that it can’t completely fit
in a microcomputer’s memory at one time.
It is therefore broken into smaller pieces
that are placed in RAM as they are needed
during the compilation process.

. Limited i/o0. If you’re familiar with BA-

SIC’s INPUT and PRINT (which are easy
to use) you may find Pascal’s READ and
WRITE more difficult. All high level lan-
guages have problems in defining the area
of i/0, because each computer has a differ-
ent implementation in hardware. Pascal
must be extended to handle i/o the way
BASIC does, or it must depend on the i/o
features of the particular operating system
being used.

. Limited control-type capability. Pascal

seems better suited to scientific data pro-
cessing than to bit manipulation or time
dependent processes with interrupts. How-
ever, bit twiddling Pascals are beginning to
appear.

. There is a great distance from the language

to where actual hardware actions occur.
Tracing Pascal from the source statement
to its final machine level end product in
RAM is difficult. This is especially true in

10.

the P-code versions. Wirth’s Pascal (and
UCSD’s) has no simple equivalent to PEEK
or POKE. UCSD does allow assembly pro-
grams to be linked through the Pascal li-
brary, and parameters can be passed be-
tween functions or procedures to the main
program in a clean and logical but rather
complex manner. Thus the programmer
must work with the machine by “remote
control”’—the automatic features of the
compiler get in the way. This may not
change because of a “my way” attitude
among manufacturers of Pascal. A funny
thing about computer languages is that
everyone is gung-ho to make them univer-
sal, but the bottom line is sales (consump-
tion). Universal languages leave little com-
petitive angles for the sellers, thus each
seller makes his Pascal sound like the only
way to go.

Cost. A Pascal computer may be more ex-
pensive than one using BASIC. UCSD Pas-
cal, for example, needs at least 48K of RAM
for the compiler and two disk drives for
optimum operation. There are versions of
Pascal for CP/M, but you can’t run Pascal

186

11.
12.

13.

14.

1.

on an AIM, KIM or SIM (yet) ... some
kind of disk operating system is needed.
Pascal is more verbose than BASIC.
Problems that can be solved in 10 lines of
BASIC take 40 lines of Pasecal.

Pascal is not forgiving on input errors or
mixed data types.

Time required to become productive on sim-
ple jobs is much greater than other lan-
guages.

Here are a few other things to be aware of
when using Pascal:

CASE Statement. In standard Pascal, bad
selector values for a CASE statement cause
an error. UCSD Pascal just ‘“falls through”
to the statement following the CASE.
Pascal uses “pointers” which you may not
want to learn about, but are extremely pow-
erful when handling data bases.

STRINGs and LONG INTEGERs. Wirth’s
Pascal has no simple string handling facili-
ties (you must create them) and doesn’t sup-
port large integers. UCSD handles strings
well and allows 36 digit integers!

appendix [

Other Parts of a Pascal System

If you’ve come this far then you’re concerned
with more details about Pascal and its system
components. Most Pascals offer (in addition to
the Compiler, Editor, and Filer) an Assembler, a
Library Linker, and sometimes a dynamic de-
bugger.

ASSEMBLER

The assembler is provided to allow you to cre-
ate assembly language programs using Pascal. The
actual assembler is host dependent—on the Apple,
it’s a 6502 macro-assembler; on Pascal/Z it’s a
780 macro-assembler. (Macro means “more than
just an assembler,” it allows custom mnemonics to
be created.) The way an assembly language pro-
gram interfaces with Pascal before it’s assembled
is arbitrary; you’ll need to consult your individual
manual for that information. The UCSD 6502
interface is covered in Appendix E. For now, un-
derstand that it can be an involved process.

187

LIBRARY LINKER

The linker lets you combine precompiled files
(assembly code or Pascal) in a system library, and
have your source program call them up as needed.
You can evoke the Linker to change or add to a
library. UNITs and EXTERNAL routines may
be accessed with the Linker. UCSD Pascal on the
Apple does the linking of extensions when you
insert “USES APPLESTUFF” at the top of your
program immediately following the program
name.

DYNAMIC DEBUGGER

This is a program for single stepping a com-
piled Pascal program (not easily implemented
with P-code) or for tracing and debugging your
code. Many versions of UCSD Pascal do not have
this feature implemented.

appendix D

ASCII Character Codes

Decimal Character Decimal Character Decimal Character
000 NUL 036 $ 070 F
001 SCH 037 % 071 G
002 STX 038 & 072 H
003 ETX 039 I 073 |
004 EOT 040 (074 J
005 ENQ 041) 075 K
006 ACK 042 * 076 L
007 BEL 043 + 077 M
008 BS 044 "(right 078 N
009 HT apostro- 079 (0]
010 LF phe) 080 P
011 \'2) 045 - 081 Q
012 FF 046 ; 082 R
013 CR 047 / 083 S
014 SO 048 0 084 T
015 Si 049 1 085 U
016 DLE 050 2 086 \"
017 DC1 051 3 087 w
018 DC2 052 4 088 X
019 DC3 053 5 089 Y
020 DC4 054 6 090 Z
021 NAK 055 7 091 [
022 SYN 056 8 092 AN
023 ETB 057 9 093]
024 CAN 058 i 094 A (or 1)
025 EM 059 ; 095 (under-
026 CONTROL 060 < score)
027 ESCAPE 061 = 096 ‘ (left apos-
028 FS 062 > trophe)
029 GS 063 ? 097 a
030 RS 064 @ 098 b
031 us 065 A 099 c
032 SPACE 066 B 100 d
033 ! 067 C 101 e
034 ” 068 D 102 f
035 # 069 E 103 g

188

Decimal Character Decimal Character Decimal Character
104 h 112 p 120 X
105 i 113 q 121 y
106 j 114 r 122 z
107 k 115] 123 {
108 | 116 t 124 |
109 m 117 u 125 }
110 n 118 v 126 n
111 o} 119 w 127 DEL
LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout
CONTROL CHARACTERS
NUL Null LF Line Feed SYN Synchronous Idle
SOH Start of Heading VT Vertical Tabulation ETB End of Transmission
STX Start of Text FF Form Feed Block
ETX End of Text CR Carriage Return CAN Cancel
EOT End of Transmission SO Shift Out EM End of Medium
ENQ Enquiry Sl Shift In SUB Substitute
ACK Acknowledge DLE Data Link Escape ESC Escape
BEL Bell (audible or atten- DC1 Device Control 1 FS File Separator
tion signal) DC2 Device Control 2 GS Group Separator
BS Backspace DC3 Device Control 3 RS Record Separator
HT Horizontal Tabulation DC4 Device Control 4 (Stop) us Unit Separator
(punched card skip) NAK Negative Acknowledge DEL Delete

189

appendix E

Assembly Language Interfacing

Note to Readers About This Appendix

This appendix shows an example of how to inter-
face an assembly language (AL) program to UCSD
Pascal. It is intended for more advanced users who
have some familiarity with the 6502 microprocessor.
It is not a comprehensive tutorial of 6502 assembly
language programming. But to make things easier
for the more learned reader, we have included vari-
ous materials to help you follow the examples, and
these materials are in Appendix F. Table F-1 in Ap-
pendix F is a summary of the 6502 instruction names.
Fig. F-1 is a diagram of the internal arrangement
of the 6502 register set, i.e., the registers that the
instructions in Table F-1 operate on. Fig. F-2 is a
more detailed breakdown of the 6502 instruction set.
Refer to these if you wish to follow the logic flow
and operation of the example we give. If you're not
concerned with this, then skip it. If you have a dif-
ferent microprocessor than the 6502, Appendix E
will still be useful for your understanding of assem-
bly language interfacing to Pascal.

This appendix describes how to squeeze even
more power out of your Pascal through the use
of assembly language programs. Assembly lan-
guage, recall, is the most elementary language on
the computer, the one the microprocessor itself
understands. By using assembly language with
your Pascal programs you increase by many fold
the power of the language itself. You will be able
to access all of the “memory mapped” features of
your computer (the Apple has myriads of them).
You will also be able to write special routines that
are rapidly executed, consume very little memory,
and allow critical timing applications. Lastly, you
will be able to create your own custom “keywords”
that (when used in your Pascal program) will
cause a specific assembly language operation to
execute.

Understand that this is not meant to be a course
on assembly language programming. There are

190

plenty of books on theé subject, and we advise you
to read one or more of them before attempting
this appendix. More precisely, this appendix is
designed to show you how to get Pascal and an
assembly language program working together.
Although we use the 6502 microprocessor instruc-
tions for our examples (because that’s the one the
Apple uses), the same methodology applies if your
processor is Z80, 1802, or 8086. In these cases, all
that changes are the actual instruction mnemonics
and the registers used to pass things back and
forth.

WHY USE ASSEMBLY LANGUAGE
WITH PASCAL?

Perhaps the most compelling reason for using
assembly language (AL) with Pascal is that it
allows you to access (manipulate) bytes and bits
in the computer’s memory. Standard Pascal (Jen-
sen and Wirth, that is) does not specify keywords
to access memory since there is no way of knowing
how wide the memory is (8 bits, 16, 32?) or how
long it is (64K, 128K, 1M ?) on a specific machine.
We can’t really blame Jensen and Wirth-—Pascal
was designed to be machine independent. (In fact,
you should be aware that as you add AL programs
to Pascal, your program will not be executable on
machines with microprocessor chips different
from your own.) Accessing memory bytes and
bits is particularly useful if you’re writing “con-
trol” type programs, i.e., those that allow your
computer to regulate electronic appliances or read
the state of a machine or device attached to a
memory port. Byte and bit access also comes in
handy when you wish to use any memory mapped
features of your computer. For example, the Ap-
ple has a speaker located at a certain memory ad-
dress. Normal unadulterated Jenson and Wirth

Pascal requires rather strange techniques to ac-
cess memory, but an AL program can be created
that can easily use the speaker and any other
memory-mapped devices attached to the computer.
Another advantage for AL programs is when a
certain operation is too slow in Pascal . . . you can
rewrite it in assembly language to be much faster.
Further critical bit fiddling and timing can be
done with assembly.

Compared to BASIC, UCSD Pascal’s AL inter-
face is cleaner and easier to follow. Recall in a
Microsoft-like BASIC we say something like CALL
32000 to access an AL program beginning at mem-
ory address 32000. This rather simple statement
tells us nothing about what the AL program does
(this is one of BASIC’s biggest weaknesses) and
therefore we must rely on documentation or com-
ments in the BASIC program to fish out this infor-
mation. We will see in an upcoming example how
the AL program’s purpose in Pascal is self-evi-
dent. Other problems exist with BASIC’s AL
structure that Pascal gets around. For example,
passing a variable with BASIC requires use of the
USR (user) function plus a strange mechanism
called the floating point accumulator. Or, if you
prefer the CALL, you must use separate POKEs
to send data to the AL and PEEKSs to recover data.
As we said, Pascal’s interface is much cleaner and
if you’re ready to learn about it, then let’s begin.

HOW PASCAL HANDLES
ASSEMBLY LANGUAGE

Pascal handles assembly language in an almost
intimate manner. Instead of keeping the Pascal
program separate and isolated from the AL pro-
gram as we do in BASIC, the AL program gets
“linked” or attached to the compiled Pascal pro-
gram. A special program called, not surprisingly,
the Linker, performs this complex connecting of
the two programs, so we don’t have to think about
it. (Of course, the assembly language program
has been converted (assembled) into the object
code of the microprocessor you’re using before-
hand . . . we will say more about the exact steps
later.) The final combined (linked) Pascal and
AL program looks, to the micro, like a single com-
piled program.

The passing of data from the Pascal program
to the AL, and vice-versa, is handled in a unique
manner. Instead of using separate memory loca-
tions for sending and receiving data, Pascal uses
the “stack” for communicating. Lets take a small
diversion for a moment to explain how the stack
works.

191

Pascal’s Stack

The Pascal compiler is called a “stack” machine
because it makes extensive use of the micro’s
stack. A stack is like the spring-loaded push-up
tray holder in a cafeteria. The trays are like bytes
of data. You can put trays on the stack or take
them off. We say putting something on the stack
is a PUSH while taking something off the stack
is a PULL. The 6502 has both a push (PHA) and
a PULL (PLA) instruction., So do the 8080 and all
other microprocessors although they have their
own unique mnemonics. The stack in the micro is
a section of memory (=256 bytes, 0100 to 01FF
HEX in the 6502). The stack is also the place
where the 6502 saves the address of the last in-
struction before a subroutine instruction (JSR).
We call these “return” addresses. The stack in
the 6502 is a “last in first out” stack (LIFO)
meaning the last item put on the stack is always
the first item removed. (There is also a “first in
first out,” FIFO, type stack.)

In the 6502, the stack builds from the top of
memory down, i.e.,, from 01FF towards 0100. A
special “8-bit stack pointer” register, located in
the microprocessor, is used to hold the address of
the lowest item on the stack . .. but for using the
stack we can ignore it . . . it’s mainly there for
the micro itself.

Why all this hoopla about the stack? Well, Pas-
cal can use the stack to send data to the assembly
language (AL) program and vice-versa. For ex-
ample, Pascal could send an 8-bit data value by
pushing it on the stack. The AL can receive the
value by doing a pull. (Understand that a push
transfers the data in the 6502’s accumulator reg-
ister onto the stack while a pull takes data off the
stack, and sticks it in the accumulator register.)
Conversely, the AL program can do the same thing
... sending data back to Pascal with a push, that
Pascal will retrieve with a pull. It turns out that
Pascal’s part in a push or pull is handled auto-
matically, in response to the way a special pro-
cedure or function statement, called an External,
is written in the Pascal source.

EXTERNAL PROCEDURES
AND FUNCTIONS

If you read the chapter on procedures and fune-
tions, then you should be well aware of their power
and flexibility. As a reminder, recall that a proce-
dure in Pascal is executed by just typing its name
where you want it executed in the program. Usu-
ally the procedure has parentheses after it that

contain any variables we wish to “send” to the
procedure or “receive” from the procedure. A pro-
cedure can stand alone as a statement, A function,
on the other hand, is used to take a variable(s),
do something with it, and return the result. Func-
tions which normally receive a value (the so called
argument), manipulate it and return a resulting
value.

Procedures and functions are used to define an
assembly language program in a manner that is
very similar to their use in a regular Pascal pro-
gram. The difference is we follow the procedure
or function definition with the reserved word
EXTERNAL. This tells the compiler to look for
an AL program to obtain the complete definition of
this procedure or function. For example, the fol-
lowing statement:

PROCEDURE Poke(Memloc, Data : INTEGER);
EXTERNAL;

tells the Pascal compiler that the procedure called
Poke is an external procedure and has an assem-
bly language section to it. Memloc and Data are
two INTEGER parameters (value parameters)
that are to be passed to the procedure. Nothing
is returned to Poke. The statement:

FUNCTION Peek(Memloc :
EXTERNAL;

INTEGER) : INTEGER;

tells the compiler that Peek is an external assem-
bly language function. The function passes an
INTEGER value (Memloc) to the AL program.
The AL program returns an INTEGER value to
the function. That is the reason for the label IN-
TEGER outside the parentheses.

How does the UCSD Pascal compiler know what
part of the AL program ties in with the external
definition? We include a special “assembly direc-
tive” in the AL source code. An assembly directive
is a nonexecutable instruction to the Pascal 6502
assembler that tells it something special. In the
UCSD assembler, a directive is differentiated from
regular instructions by preceding it with a period
(.). The directive for indicating a procedure is:

.PROC NAME X

where NAME is the name used in the Pascal pro-
cedure, and X is the number of parameters being
passed to the AL program. For example:

.PROC POKE,2

tells the assembler this is a procedure called
POKE and that 2 words of parameters are ex-

pected. This could be equivalent to two integers
or one real. You’ll notice that we are using UP-
PER case for the NAME of the procedure (or
function). The assembler isn’t as smart as Pascal
—it doesn’t understand lower case.

Similarly, the directive for an assembly func-
tion is:

.FUNC NAME,X
and an example is:
.FUNC PEEK1

where PEEK must appear in our Pascal source
program. That’s the simple part. Now we are
equipped with enough knowledge to get into the
actual steps to creating a successful AL program
that works with Pascal.

THE FIVE STEPS

After all this talk about stacks and externals,
the actual steps required to end up with an AL
program attached to Pascal may seem trivial.
Here are the steps you should follow:

1. Create the Pascal source program. This
should contain your external definitions.

2. Compile the Pascal source into P-code. The
compilation will not require you to have
written the AL part yet. Don’t try to execute
this compiled program, however. If you do,
you will get an error message saying you
must Link first.

3. Create the assembly language source pro-
gram. Again you use the Pascal Editor to
create the original source code for the AL
program. In a while we’ll say more about the
assembler that comes with UCSD Pascal.

4. Assemble the AL source code to object code.
We use the Pascal assembler to do this. The
object code is saved in a disk file. The origin
for the code (i.e., its final start address) is
ignored since when we link the code to Pas-
cal, it will be inserted in the correct place
for us.

5. Link the assembled object code to the Pascal
P-code. We use the Pascal Linker to do this.
In UCSD Pascal, this linking involves an-
swering a few questions asked by the Linker.
The Linker then combines our assembled as-
sembly language object code with the Pascal
P-code and saves it in a new executable file.

That’s it (and not a moment too soon!). Now
that we have a file which contains the compiled

Pascal program with the linked-in assembly lan-
guage routine(s) (yes, we can link many proce-
dures and functions), you can execute your pro-
gram using the normal X (ecute command. Later
we will see how to put the assembled AL object
code into the Pascal System Library, which elim-
inates the need to go through step 5, the manual
linking. The X (ecute command causes an auto-
matic access to this library and any AL routines
specified by the Pascal source code in that library
are then linked in. A USES NAME statement will
appear in the Pascal source where NAME is a
Pascal declaration program that declares our AL
program. Both must be in the library.

It is important to understand that the assembly
language object code produced by the assembler
for UCSD Pascal is in relocatable form unless
overridden with the .ABSOLUTE directive. This
means you don’t have to tell Pascal where to
finally put your code . . . it figures out the right
spot for you.

To more fully understand the power of exter-
nals, we present an example that illustrates sev-
eral concepts we’ve discussed.

A PRACTICAL ASSEMBLY LANGUAGE
EXAMPLE: PEEKPOKE

As an example of how useful and powerful
Pascal’s assembly language interface can be, we
will use it to create our own custom language
extensions to our UCSD Pascal. We will create a
Peek and Poke operator using machine language.
Recall that PEEK and POKE are found in prac-
tically all commercial versions of BASIC. PEEK
is a function that takes a memory address and
returns an 8-bit value equal to the contents of
that address. POKE is a procedure that stores an
8-bit data value in a memory address. Our Pas-
cal lacks PEEK and POKE, and this makes it
awkward to access all the important memory-
mapped features of the computer. For example,
Apple’s speaker is memory-mapped (at C030
hex), so we could use either operation to make it
buzz by repeatedly accessing this the speaker’s
address. First, the high level Pascal code will be
introduced. Here it simply demonstrates (proves)
that our techniques work. Then we will explain
the AL program.

Pascal Source Demo

Listing E-1 shows a Pascal test demo program
called PeekPokeDemo. First, four variables are
declared as INTEGERs (16-bit range — 32767 to
32767). Next, we declare the Poke procedure and

193

Peek function as we described earlier, followed by
the EXTERNAL statement. Then we set Memloc
to —16336 which is the address of the speaker.
Memloc could be any valid address in the memory
range of the 6502. Since Pascal treats 16-bit IN-
TEGERs in 2’s complement (last bit, bit 15, is
the sign), we must convert addresses greater than
32767 to a negative equivalent value. Use the
formula :

2's complement address = —(65536 — address x)

where address x is the address in greater than
32767 form. For example, the speaker is located
at C030 hex. This is 49200 in decimal and using
our formula:

—(65536 — 49200)
—16336

2’'s complement equivalent

and we arrive at the number we use in our pro-
gram,

The first FOR loop tests if the Peek function
can toggle the speaker (it doesn’t really check if
Peek is returning a correct value). The loop
cycles the speaker 1000 times—the speaker is
clicked once every time the speaker’s memory
location is accessed. Dummy is a necessary but
useless variable. The next FOR loop does the same
thing to the speaker using the Poke procedure,
which needs no dummy variable, but does need
dummy data; here we use 1. In both cases, the
expected effect is a brief tone of a moderately
high frequency. The last 5 statements simply Poke
a known Data value (51) at a fixed location (7),
then Peeks this location, and prints out the Data
value returned. If everything works correctly af-
ter the five steps are followed, we will see “I found
51 at memory location 7” printed on the screen
upon execution.

Step 1 is to enter this Pascal program, and
Step 2 is to compile it.

By the Way . ..
The Last Assembler

The UCSD assembler is derived from an assembler
developed at the University of Waterloo, and ironi-
cally called TLA, for The Last Assembler. The basic
concept underlying TLA, and all UCSD assemblers,
is the use of a central machine . . . an independent
core that is common to all versions of the assembler.
This is the same concept behind Pascal: the central
core contains machine-dependent core to handle the
differences of individual microprocessors. On the Ap-
ple, three files exist that allow the TLA to work:
SYSTEM.ASSEMBLER, 6500.0PCODES, and 6500.

ERRORS.

Listing E-1.

PROGRAM PeekPokelemo;

(% Demonstrates using machine

| anguage programs that do

a Peek function and a Poke procedure (like PEEK and

POKE in BASIC} so you can use all your computer’s
memory mapped featuraes. Here are two examples that
toggle the speaker. #)
UAR i, Memloc, Data, Dummy : INTEGER;
PROCEDURE Pokae(Memloc, Data : INTEGER);
EXTERNAL;
FUNCTION Peek (Memioc : INTEGER) : INTEGER;
EXTERNAL ;
BEGIN
Memloc := -16336; (% CP38 Hex = address of speaker in the Apple *)
FOR i := 1 TO 18480 DO (% Demos Peek by “toggling® the speaker #)
Bummy := Peek(Memloc);
FOR i = 1 TO 18688 DO (# Demos Poke by "toggling"” the speaker ®)
Poke(Memloc,13;
Data := 513 (% Sample data to check Poke procedure *)
Memloc = 73

Poke(Memloc,Datal;

Dummy Peek{Memloc);
WRITELNC(' I found * ,Dummy,’

ENMD. (% PeekPokeDemo %3

TLA has many features usually found in the more

powerful assemblers, including:

e 13 binary operators

® hex or decimal constants

e 8 pseudo ops (ASCII, BYTE, BLOCK, WORD,

EQU, ORG, ABSOLUTE, INTERP)

® macros

conditional directives (IF, ENDC, ELSE)

Pascal host directives (CONST, PUBLIC, PRI-
VATE)

External reference directives (DEF, REF)

Listing control directives (LIST, NOLIST,
MACROLIST, NOMACROLIST, PATCHLIST,
NOPATCHLIST, PAGE, TITLE)

e File directive (INCLUDE)

All in all, this is a fine assembler. Your only prob-

lem may be the lack of a dynamic debugger for trac-

ing your TLA program.

Assembly Language Source for PEEK and POKE

Our assembly source code is shown in Listings
E-2A, E-2B, and E-2C. The code may look strange
at first, but it’s not that difficult.

at memory

194

location

' yMemloc);

MACRO—First, the two pieces of code (Listing
E-2A) at the beginning are called MACRO POP
and .MACRO PUSH. The “macro” is a feature of
powerful assemblers; it allows you to create your
own custom instruction sequences that are trig-
gered on the appearance of the macro’s name in
the AL program (the macro is to the assembler
as the procedure is to a Pascal program). Here
the POP macro takes two bytes off the stack and
stores them in addresses 00 and 01 in page O.
We will use them to save the Pascal return ad-
dress so we can get back to Pascal when done.
(We need two addresses because it’s a 2 byte (16-
bit) address.) Later when we see POP x, we know
that the POP macro executes and the 2 bytes are
stored at x and x + 1.

PEEK—The code for the PEEK function is
shown next, in Listing E-2B. The .FUNC direc-
tive starts the code. RETURN is given the value
0 via the .EQU equate statement. Now understand

Listing E-2A.

-MACRO POP F
PLA

STA %1

PLA

STA %1i+1

. ENDM

.MACRO PUSH H
LDA %1+1

PHARA

LDA %1

PHA

LENDM

Macro pops 1B bit return address

Macro pushes 1B bit return address

Listing E-2B.

LFUNC PEEK, L 3 Une
5 Sample Peek function

5 FUNCTION Peck(Memloc @ INTEGER:!
RETURN .EQU @
Note:
POP RETURN
PLA

PLA

PLA

PLA

PLA H
5TA 2

PLA H
STA 3

we Wi wa W

LDY #8

LDA e2,Y H
TAY ;
LDOA #8

FPHA :
TYA H
PHAR H

Push

PUSH RETURN 5
RTS H

that when Pascal executes the machine code, it
leaves the 16-bit address of its last instruction
on the stack. Our program does a POP RETURN
to remove the two bytes and save them for later
use. Next, we do four successive pulls (PLAs) off
the stack. This removes 4 bytes of stack bias . ..
i.e., useless data left on the stack. (This is only
necessary for the .FUNC function.) Following the
stack bias, the memory location Memloc is found
in the next 2 bytes of the stack. Recall Memloc is
the address we want to Peek at and is the one
parameter we are passing to the AL program.

MSE
Get the Peek
Push LSB

INTEGER;

Restore Pascal
Return to Pascal

195

word parameter

Temp variable te hold return oddress
B-35 hex free

Sava Pascal
Discard 4 bytes stack bias

return address
.FUNC oniy

Get LSB Memloc

Gat MSE Memloc

Get Data (indiract indexed)
Save Data in Y register

8

yalue back

return address

The instructions PLA, STA 2, PLA, STA 3 take
the bytes of Memloc off the stack and put the LSB
in 2 and the MSB in 3 (the address is stored in
LSB-MSB format on the stack). Now we are ready
to use this address to do the actual Peek. The in-
struction LDY #0 puts zero in the Y register, then
the instruction LDA@2,Y does all the work. It is
an “indirect indexed” 6502 instruction that says
“load the accumulator (LDA) with the contents
of the memory location formed by using the byte
at address 2 as the LSB and the byte at address 3
as the MSB plus the value of the Y-register (zero

Listing E-2C.

.PRGC POKE, 2 H

5 Sample Poke Procedure

Restore Pascal
Return to Pascal

paramaters,
Dato then Memioc)
Get LSB Data

Two word parameter

return addraess
last first

Sat MSB Data - discard
Get LSBE Memloc

Get MSB Memloc

Get Data back
Store Data at Memloc

return address

; PROCEDURE Poke(Memloc, Data INTEGER);
RETURN .(EQU B
POFP RETURN 3 Save Pascal
s Putli
: (ie,
PLA H
S5TA B
FPLA H
PLA H
STA 4
PLA H
STA 5
LDY #B
LDA ©& H
STA @4,Y H
PUSH RETURN 5
RTS H
.END

here).” We don’t take advantage of the indexing
with the Y-register here. Now the contents of the
accumulator is our desired PEEK value, and it is
time to return it to Pascal. Since UCSD Pascal
expects a 2’s complement 2 byte result, we push a
zero on the stack for the MSB (since our answer
is just 8 bits), first saving the PEEK value in the
Y-register (we don’t want to lose it). The code is:
TAY, LDA #0, PHA. Next we put the LSB of the
answer on the stack (after getting it back from
the Y-register) with the code: TYA, PHA. We
push the return address back on the stack via our
PUSH macro. Finally we do a return from sub-
routine (RTS) to get back into Pascal (a JSR
from the Pascal calling routine got us here, but
we didn’t see it, and we don’t have to be concerned
with it).

That’s it! Note addresses 0-35 hex (0-53 deci-
mal) of page zero are available for AL programs
. . . but there’s no guarantee Pascal won’t alter
them later.

POKE—The POKE procedure is the last sec-
tion of machine code in Listing E-2C. It starts
with the .PROC procedure directive. The way the
procedure appears in Pascal is illustrated in a
comment statement for reference. Next the POP
macro appears followed by the code to pull the
four bytes of the two procedure parameters, LSB

196

and MSB. (Recall we are sending the AL program
both Memloc and Data.) The code: PLA, STA 6,
PLA, PLA, STA 4, PLA, STA 5 does this, putting
the values in page 0 addresses 6, 5, and 4 as fol-

lows: :

I
L
o 6 Data POKE data
51 MSB Memloc
POKE 1
stuff\ 4 | LSB Memloc /POKE address
31 |
1 !
used 2 : {
by 11 !
Peek~0 | I
I 1
' |

RAM

Now we are all set to do the actual POKE. The
code is like our previous Peek example; however,
we use an indirect indexed store instruction in-
stead of a load. The LDY #0 puts a zero in the Y-
register and the LDA 6 puts the data sent to
POKE into the 6502 accumulator (recall it’s
stored in 6).

Next, the STA @4,Y stores the data in the ac-
cumulator at the address formed by the LSB at 4
and MSB at 5 and the Y-register (here 0).

Since POKE has no values to return, we simply
restore the Pascal return address with a PUSH
RETURN and do an RTS (return from subrou-

tine) to get back into Pascal. Now we are done
with entering both routines so we place an end
directive (.END) as the last thing in the program,
That’s all there is to it.

After entering these AL routines, we follow the
remaining steps—assemble, and link—and our job
is done; we’ve added two new extensions to our
Pascal: Peek and Poke. Try inventing your own
custom extensions. A useful one would be a Call
8o you could use any monitor routines available in
the computer’s ROM space. Call would be a pro-
cedure.

THE PASCAL LIBRARY

There is a problem with the approach we’ve out-
lined so far, and that’s if we change anything in
our Pascal source code, we must go back and man-
ually re-link the assembled object code to the new
P-code, which is a bother, especially if you're in
the debugging stage. UCSD Pascal provides a tidy
solution to this problem and it is called the “li-
brary.” The library, named SYSTEM.LIBRARY,
is a collection of programs that contains various
intrinsics (e.g.,, TRANSCENDental functions),
graphic routines, external functions, etc., which
might be required by your Pascal program. You
can put all your assembled programs into this li-
brary by using another program called LIBRARY.
CODE. To get your Pascal program to automati-
cally link to the assembled program, we use the
statement :

USES NAME1;

where NAME]1 is the name of the library routine
we installed in the library. The USES statement
must be located on the line immediately after the
Pascal program name. Thus we could say:

USES TRANSCEND, PeekPoke;

to instruct the compiler we intend to use the tran-
scendental functions (LOG, SIN, LN, etc.) plus
our PeekPoke routines. This eliminates the tedi-
ous linking step after every compilation. Note in

197

UCSD Pascal the UNIT cannot be a mixture
(linked) of compiled Pascal and assembly code.
You must create two modules for the library . ..
a Pascal declaration program (just has PROC,
FUNC and EXTERNAL in it) and a separate as-
sembly program. The declaration is called Peek-
Poke, or whatever.

We can’t go into the details of using the Linker
as operations vary with each version of Pascal.
However, it should be adequately covered in your
Pascal manual. Although there are quite a few
steps involved in using the library, one can still
make excellent use of it with a little practice.
Some other interesting applications which could
be placed in your library are:

USES SOUNDEFFECTS; — a special set of
sound effects, such as TONE, VOLUME, EN-
VELOPE, DURATION, etc.

USES BIGMATH; — a routine to do double-
precision real math, i.e., 12 or more digits.

USES ANIMATION ; — routines to allow fan-
tastic moving picture effects.

In the Apple, the library is used to hold the
Pascal i/0 routines, LONG INTEGERs, the tran-
scendental functions, TurtleGraphics, Apple-
Graphics, paddle routines, and system intrinsics
(such as string functions). You can remove any
of these you don’t want in your library.

Quiz

True or False

1. A program which uses a customized assembly language
routine becomes nontransportable to other types of com-
puters.

2. When used with Pascal, assembly language routines are
generally slower executing than built-in Pascal proce-
dures and functions.

3. The only way to mate a Pascal program te an assembly
language routine is to use the Linker.

4. The Pascal keyword EXTERNAL alerts the compiler that
there is an externally linked assembly language routine.

5. If your AL routines are stored in the library, you no
longer have to use the keyword EXTERNAL in your
program.

appendix F

The 6502 Microprocessonr

The following is a summary of the 6502 micro-
processor instruction names, the 6502 internal
register set arrangement, and a detailed instruc-
tion operation summary.

Table F-1. 6502 Instruction Names

ADC
AND
ASL

BCC
BCS
BEQ
BIT

BMI

BNE
BPL
BRK
BvVC
BvVS

CLC
CLD
CLI
CLv
CMP
CPX
CPY

DEC
DEX
DEY
EOR

INC
INX

Add to Accumulator with Carry
AND Memory with Accumulator
Accumulator Shift Left

Branch on Carry Clear

Branch on Carry Set

Branch on Result Equal to Zero

Test Bits in Memory with Accumulator
Branch on Result Minus

Branch on Result Not Equal to Zero
Branch on Result Plus

Force Break

Branch on Overflow Clear

Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

Exclusive-OR Memory with Accumulator

Increment Memory by One

Increment Index X by One

198

INY

JMP
JSR

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI

RTS

SBC
SEC
SED
SEI

STA
STX
STY

TAX
TAY
TsX
TXA
TXS
TYA

Increment Index Y by One

Jump
Jump to Subroutine

Load Accumulator with Memory
Load Index X with Memory
Load Index Y with Memory
Logical Shift Right

No Operation
OR Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor from Stack

Rotate Left

Rotate Right

Return from Interrupt
Return from Subroutine

Subtract from Accumulator with Carry
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

PCH

PCL

199

ACCUMULATOR

INDEX REGISTER Y

INDEX REGISTER X

PROGRAM COUNTER

STACK POINTER

pC’

PROCESSOR STATUS REGISTER ‘P’

CARRY

ZERO

INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
UNUSED

OVERFLOW
NEGATIVE

Fig. F-1. 6502 register set arrangement.

1 = TRUE

1 = RESULT ZERO
1 = DISABLE

1 = TRUE

1 = BREAK

NA

1 = TRUE

1 = NEG.

INSTRUCTIONS IMMEDIATE | ABSOLUTE | ZEROPAGE | ACCUM | IMPLIED | {INO.X} § (INDLY | Z PAGE.X | ABS.X ags.v | mecarve | womect | z pace. v | copes e

MNEMONIC OPERATION op|n | #]op[n|#lop{ n|wjor| n|#lor|n|atorl.n|wfor|n|w|oP[n]|afor{n}|w|OP[n|#|OP|n nOPnnOPnﬁl‘%f‘%?;g
ADC A+MsC~A @Mles| 2|2 [6D] 4|3]65] 3|2 61| 62|71 |s]27rs]af2 7o) afa|79]a]3 NV....2C| ADC
AND AAM—~A 29| 2|2 [20] a]3]25]| 3|2 2t 6|23 5|2 |35]4a|2 {30|af3[39]4]3 Newo.-.2-]aND
ASL (o ammm— oe|6{3os| 5[2 foa| 2|1 6[6]2[1E|7]|3 N+ ooow-2c| ast
BCC BRANCHONC = 0 @) 2|22 v v e w e s w]| BCC
BCS BRANCHONC = 1 (2 i 80| 2| 2 e e ... -] BCS
BEQ BRANCHONZ = 1 (2 : Fo| 2| 2 . .4]8BEQ
BT AAM 2c| 4|afea|3 |2 . MMgs » » - 2| BT
BMI BRANCHONN = 1 (2) (2] 2 e e e e sl BMI
BNE BRANCHONZ = 0 (2} pol2| 2 o e e mice nf BINE
BPL BRANCHONN = 0 (2) 0]2]2 e e s+ e m +| BPL
BRK BREAK 00|71 j e et -1 - o BRK
B VvC BRANCHONV =0 2) s0{2|2 R - T
BVS BRANCHONV = 1 (2 70122 e s s o0]l BVYVS
cLC 0-C 18f 21 “ Tiw s s mmal| @
¢LD 0-D D8l 2|1 . O S
cLl 01 58| 2|1 « 5w s O n| @
cLv 0~V 88| 2|1 P O T
cMP A-M col 2|2 |cp| 4| 3]cs[3| 2 cif6|2|o1|s{2}os| 4| 20D a|3}08|4a]|3 Neowoozec|lcome
cPX X-M Eo|l 2| 2|ec|a|3|es| 3|2 N.....2zc|lcPx
cPY Y-M col 2| 2|ccla}afcs 3)2 N.....zclcpy
DEC M-1=M cel 6| 3|ce| 5| 2 o6 6| 2[oE| 7|3 N+..-...2.DEC
DEX X - 1-X cal 2| N+ oosoeoZ.]DEX
DEY Y-1-Y 83|21 N .+« + « 4+ 2 | DEY
EOR AYM=A () |aal 2] 2]4D| 4 [3as| 3|2 41| 6f2]51|5|2]55|a]|2]s5p{a|3s9fa]|3 N:.++.-2.|]EOR
INC M+ 1 =M EE| 6| 3|E6| 52 F61 6| 2|FE] 7|3 Noeoeoweo2oliNG
I N X X+ 1=X E8| 2|1 N« « « o = Z)] INX
tNY Y1y cgl 2|1 N s+ « oo 2 INY
JmP JUMP TO NEW LOC ac{ 3|3 6c| 5|3 N R
JSR JUMP SUB 20{63 R Y
LDA M- A () A9l 2] 2|aD[4 [3]As| 3|2 A 6|2]B1is5]|2fBs|a|2]8D/a|3[B9|a]3 N e« s+ 7] LDA
LDX M~ X i |Aa2] 2| 2|AEf 4 | 3|A6| 3| 2 BE| 4| 3 B6[4 | 2N » « = =+ ¢ Z » k X
LOY M-y iy Aol 2| 2|ac) 4 |3 |Ad| 3| 2 Bal 4| 2|BC| 4|3 N oo oo woe 2w L 2
LSR o—{ F-c aE| 6| 3[a6} 5| 2faa| 21 s6| 6] 2]|se{ 7|3 0+ + « >+ ZCl LSRR
NOP NO OPERATION EA| 21 i mos i w@m s s | MO
ORA AVM =~ A 09| 2| 2|oDf 4| 3|05 3]2 orf6]2f11]|5]2]|5]4| 2[1Dj4]3]19|4]|3 N e o o oo Zo ORA
PHA A+ Ms 8- T &S a8 3| Y Y Y
PHP P +Ms S-1-8 o8| 3|1 s e s a6 u| PP
PLA S+ 15 Ms - A 68l aft Ne ooz lPLa
PLP 8|41 (RESTORED) PLP
ROL 266|326 5[2]2al 2] 6|6 2f3€]7)3 N+« ZC|R
ROR 6E[6 |3]66| 5|2 (6A[21 76[6|2|7E] 7|3 N+ -+ 2zC|R
R T RTRAN INT 40| 6 [1 'RESTORED: A
RTS RTRN SUB 60{ 6|1 R
SBC A-M-C-a [Es| 2| 2 {ep| 4| 3lEs| 3| 2 e1|6|2]F1| 5 2|esla| 2|FD} a|3|Fo) a3 Ny - z2@3f sBC
SEC 1-C 38|21 s e e e e -1l sEC
SED 1.0 F8| 2|1 s e e et -l sED
S EIl 1.1 ml21 D L RN T I
STA A-M 8D| 4| 3f85|3]2 g1]6|2%91 6 2)95|a|2fop|5|3e9|5]3 c e s e e e dfsTA
ST X X oM geja|3fes| 32 96l a2« « « « o v o | sTX
STy YoM 8c|af3sa 3|2 9| a2 G v oaowr e s o] STy
TAX A+ X AAl 2|1 N o oo o2 1ax
TAY A .Y A8l 2|1 N+ +«+««2<|Tay
TSX S -X BA| 2|1 N e o» o072+ 18x
TXA X A Baj 2|1 Noe o+ o2l 1Txa
TXS X -5 oAl 2| 1 P T
TYA Y -A 98| 2} 1 N+ -2+ 1va

h ADD 1o N IF PAGE BOUNDARY |5 CROSSED x INDEX % . ADD M MEMORY BIT 7

oy st w wewomvane

3 CARRYNOT BORROW A RCEUMUEATON v AND n NO. CYCLES

14 IF IN DECIMAL MODE. 2 FLAG IS INVALID M MEMORVRERERFECTTYE ADDRESS M R " NO.BYTES

ACCUMULATORMUST BE CHECKED FOR ZERO RESULT Ms MEMORY PERSTACK POINTER ¥ EXCLUSIVE OR

Fig. F-2. 6502 instruction set summary.

200

appendix &3

Inaccuracies of the Amortization
Loan Formula

The textbook formula for calculations with com-
pound interest can lead to some disturbing results
when used on a computer (or calculator). This is
because there is a loss of accuracy in the answer
due to certain values in the equation becoming too
small. Recall the loan equation we used was:

RegularPayment =
Principal X InterestPerPeriod
1 — (InterestPerPeriod 4 1)—NumberOfPayments
This formula is based on a more basic one that
works for compounding interest on a savings ac-
count:

P = A1 4+ I)N

where,

P = present value of account,

A = amount on deposit,

I = interest rate,

N = number of times compounded.

Now a bank that quotes the annual simple interest
rate (such as ‘“we give 5.25%”) actually com-
pounds your account at the equivalent daily rate,
not just once a year. Thus, to find the actual daily
interest rate to use in our formula, we must divide
I by M where M is the number of times the inter-
est is compounded per year (365 times if it’s every
day). Our daily formula becomes:

P = A(1 + I/M)N

Now this is where the trouble begins for a com-
puter. The result of dividing the interest by the
number of times the interest is compounded in a
year (I/M) may be extremely small, yielding a
number with several zeroes between the decimal
point and the actual significant digits. For exam-
ple, the daily interest rate for a 5.25% account is:

0.0525/365 = 0.00014383562

201

In a computer with 8 digits of accuracy, the term
(1 4+ I/M) would then be rounded to 1.0001438,
which would result in an annual interest error of
14 cents on a $10,000 account!

The same thing occurs in our Pascal Loan ex-
ample:

InterestPeriod := (Annualinterest / 100) / PaymentsPerYr

InterestPeriod becomes very small. The way out
of this mess is to find a more accurate way to per-
form the compounding operation. There is a fa-
mous expansion formula from Calculus called the
binomial expansion:

+N(N—§)‘(N—2) * I3+ ...+ I¥

The formula allows you to calculate the result of
(1 + I)¥ to any accuracy you wish by simply in-
cluding as many terms in the calculation as are
needed. Each term has less and less of an influ-
ence on the final result. In fact, after about five
terms, the values become negligibly small. Thus,
you can set up a loop in a Pascal program to deter-
mine the result. Furthermore, each term may be
computed from the previous term. In each pass,
the loop would compute a term from the previous
one, save the new term for the next round, and
add the result to the series total. The result would
be compared with the previous total, and if the
result was not enough to raise the total within
your computer’s precision, it would exit the loop.
We will leave it as an exercise for you to write
the Pascal program for this expansion. A good
article on the subject appeared in the April 1980
issue of Microcomputing, page 50.

appendix f=d

Answers to Quizzes

CHAPTER 2

. B—Contains non letter/number. (space)

D—“Program” is a reserved word
F—First character is not a letter

2. False—the semicolon is part of the required syntax.

3. False—they are separated with commas.

. False—all spaces (except within apostrophes) are elim-

inated when the program is compiled.

. (1) Space in program name

(2) No semicolon after program name

(3) Quotes used in first WRITELN instead of an apos-
trophe

(4) No semicolon at the end of the first WRITELN
statement

(5) WRITELN is misspelled.

(6) One apostrophe is used in the word won’t instead
of two (won’t).

(7) No apostrophe after the word compile

(8) No period after the END

. GOTOXY (11,6)—don’t forget to start counting with po-

sition 0, line 0.

CHAPTER 3

Variables

1.
2.

False—the first 8 characters are significant.

False—nothing in the name will tell what the type is.
You must look at the declaration section at the begin-
ning of the program.

. False—it makes no difference how long the variable

names are once the program is compiled. Make the
names as long as is necessary for clarity.

. False—you must initialize all variables yourself (you

should do this even if your version of Pascal does it
for you).

5. True— := means “is replaced by,” = means “equals.”
Inputting
1. False—you must provide your own prompt character

(e.g, 7 ..t ==).

202

2. False—Pascal will abort the program.

3. False—comments take up absolutely no space during
compilation, and programs are only obvious when you
are writing them.

4. False—the space between the (and the * changes the
Comment symbol into just a couple of characters.

5. True.

6. False—they work in very different ways when you are
entering data into CHAR type variables. A READ will
accept your single character input and go on without
your having to press RETURN. READLN always waits
for you to press RETURN.

Other Variable Types

1. Legal: A,F, G, H
Illegal: B—no digit before the decimal point
C-—exponent is not an integer
D-—no digit after the decimal
Sometimes: E—check your version of Pascal

2. A. 1.2480000E7 C. —1.147E-9
B. 8.0E1 D. 5.5789E-1

3. A. 80487.9 C. —94800000000
B. .0021448 D. .000000005148

4. The two values are TRUE and FALSE.
5. False—integers have no decimal point.

6. A. 50 (that was a CHAR, not an INTEGER)
5 (an INTEGER)

—875

1

. 32

61

o 0w

CHAPTER 4

1. False—a procedure should be just long enough to justify
its existence—if all it’s supposed to do is clear the screen,
then only a few lines will suffice.

2. False—it is necessary; the program won’t compile if it
is too large. However, you should remember the rule
that a procedure should not exceed one or two screens-
ful.

3. True.

4. True.

5. False—the procedures must be defined before they are
called.

6. False—a variable is always “local” within the block in
which it was declared. It will also be “global” if there
are other blocks within its local block.

7. False-—the “most local” variable always takes prece-
dence, which means that the outer block variable will
be ignored within that inner block.

CHAPTER 5

1. False—no error will occur, but the statement(s) under
control of the FOR will not execute at all.

2. True.

3. False—there is a better chance that your results are in-

accurate. This might be because of the number of sig-
nificant digits of accuracy your version of Pascal uses,
or the bank might be using a different method to calcu-
late the payments.

. False—if it has six digits of accuracy, then that’s all

you get.

. True—but don’t use the “places after the decimal point”

number unless you are using it with REALs.

CHAPTER 6

. False—there are only two values possible, a Boolean

TRUE or FALSE.

. True—as long as the single variable is a Boolean vari-

able.

. True—unless parentheses are used, in which case the ex-

pressions within the innermost parentheses will be eval-
uated first, then the next innermost, ete.

. False—by using parentheses, the order can be controlled.

5. False—indenting is only used to make a statement

clearer to you—it has no effect on program execution.
ELSEs always refer to the most recent IF-THEN.

CHAPTER 7

. False—the expression may evaluate to FALSE the first

time it is checked in which case the loop would not cycle
through at all.

. True—or else you may end up in an endless loop.

3. True—the expression isn’t checked until after the loop

cycles through so it always cycles through at least once.

4. False—it isn’t necessary, but it won’t bomb the pro-
gram.

5. False—it can only be an ordinal type, and a STRING
is not an ordinal type.

6. True.

7. True——the condition in which there is no match between

the case-index and the values of the ccls is undefined in
standard Pascal. However, in UCSD Pascal, this condi-
tion is defined—the program will drop through to the
next statement after the CASE, but if you want to make

203

your programs transportable to other versions of Pasecal
you should avoid this condition.

CHAPTER 8

Parameters

1.

Value: Number, Address, City, Block, Lawn
Variable: Bugs, Pounds, Mass, Height

2. True.

3. Palse—variable parameters can be used to send and re-

ceive or to just receive.

. The only two intrinsie procedures which return a value

in the actual parameter are READ and READLN, there-
fore, they must use variable parameters. The rest prob-
ably use value parameters,

Functions

1.

A. Whistle—Boolean function
Wait——procedure

. AnimalList—procedure
Sum-—funection

. FireCheck—procedure

HoseDown—function

Bow

. False—however, you can use variable parameters to re-

turn a STRING value.

. True—of course, you can’t exceed the size limit of a

block!

. False—procedures can stand alone, but functions can’t

stand alone any more than a variable can.

. True—as long as that parameter is a value parameter.

CHAPTER 9

Strings

1.

[]

True—however, it defaults to 80 and if you want it to
be larger (or smaller) you must say so at the time you
declare it.

. True.

3. False—it will return a 0.

4, False—it will always yield an INTEGER value—and 0

if no match is found.

. False—in UCSD Pascal, the procedure or function will

either pretend it didn’t hear your error and will leave
your STRINGs alone or it will return a null string (with
COPY).

Long Integers

1.

False—they can be declared to have less than 36 digits
but no more than 36 digits.

2. False—21 decimal places (7 + 7 + 7).

3. True.

. Palse—you must add the extra decimal places before

the division.

CHAPTER 10

Arrays

1,

True—REALS are an example of this.

. False—a scaler data type can’t be broken into elements

—it already is an individual element. STRINGs are a
structured data type.

3. True—although the subscripts may be of different types.

5.

True—but be very careful when accessing the CHAR
elements that one does in fact exist!

False—REALSs can’t be used as subscripts.

Enumerated User-Defined Data Types

1.
2.
3.

True.
False—in this way they are like BOOLEAN types.

False—a constant ¢yay appear only once in a TYPE dec-
laration at any level of a block.

. False—PRED can be used to decrement an ordinal type,

use SUCC to increment.

Subrange Types

1.
2.

True.

False—the LowerBound (first boundary) must be less
than the UpperBound (second boundary).

. True.

204

4, True—however, we feel it is clearer to use the TYPE
declaration section to declare new types.

Sets

1. True.

2. False—any but REAL.

3. True—if the two sets have identical members, only one
is used.

APPENDIX E

1. True—and the limitations are based on whether the rou-
tines are processor dependent or computer dependent.
A 6502 routine will work on other 6502 systems unless
it accesses features in the specific microcomputer (e.g.,
Apple’s speaker).

2. False—assembly language is as fast or faster than Pas-
cal’s intrinsics, especially for a P-code Pascal.

3. False—you may install your routines in Pascal’s library.
4. True.

5. True—however, you must name the routine with a USES
statement at the beginning of your program.

ABS(x), 105
Accessing the elements, 110-111

Adding error checking to Val, 118-121

AND, OR, and Not, 71-74

Apple Pascal, 23

Arrays, 144-149
and memory, 147
multidimensional, 145-148
string, 148-149
three-dimensional, 146-147
two-dimensional, 145-146

Assembler, 187

Assembly language
example: PEEKPOKE, 193-197
source for PEEK and POKE,

194-197

Birth of Pasecal, 11
BEGIN, 26
BOOLEAN variables, 45-46
as the condition, 71
truth tables, 72
Bowles, Kenneth, 21
Building blocks, 47-49

C

Calculate procedure, 134-135
Calculations, 34-38
precedence in, 34
rules, 84
CASE, 90-93
and BOOLEANSs, 93-94
Centering your lines, 112
CHAR variables, 39-40
CHR (x), 40-42, 105
Comments, 39
Compiled language, 156
Compound statements, 61-63
using, 62-63
CONCAT, 114

Index

Constants, 125-126
Converting

INTEGERSs into STRINGs, 122-123

STRINGs to INTEGERSs, 117-118
to numbers with Val, 129-132
COPY, 114-115
Counting
by twos, 60
without numbers, 60
Creating constants, 78-83
Cursor control: GOTOXY, 30-31
CursorDemo, 31
Customized types, 149-152

Data types
scalar, 144
structured, 144
Decision maker, IF-THEN, 70-71
Declaring variables, 35
Default length, 110
DELETE, 115
Delimiters, 61
DOWNTO, looping with, 60
Dynamic debugger, 187

E
Editor, 17
Efficient code vs. clear code, 112
END, 27

Error flag, 118
Examples of

illegal Pascal REALs, 45

legal Pascal REALs, 45
Expanding a program, 65-69
Explaining WHILE statement, 85-87
Exponents in Pascal, 58-60
Expressions as

actual parameters, 101

subsecripts, 149
External procedures and functions,

191-192

205

Filer, 18
FOR
statement, 57-60
variations on, 60-61
Formal parameters, 97
FORWARD, 109
Functions, 103-109

G

Global and local variables, 49-52
GOTO where, 90

H

History of the language, 20-23
How Pascal
handles assembly language, 191
works, 15-17

Identifiers, 26

undefined, 53
IF-THEN

decision maker, 70-71

with compound statements, 70-71
IF-THEN-ELSE, 74-78
Initializing variables, 37-38
Inner workings of parameters, 100
Inputting numbers with STRINGS,

116-123

INSERT, 115-116
INTEGER variables, 34
Interpretive language, 15
Intrinsic procedures, 101-102

L

Learn by example, 135-136
Length

attribute, 110

of STRING, 111-112

Library linker, 187

Loan payment program, 63-65
formula, 64
the program, 64-65
revisited, 124-125

LONG INTEGER (s), 153
for increased accuracy, 123-136
variables, 46

Looping with DOWNTO, 60

Magic data structures, 15
Maximum STRING length, 110-111
MAXINT, 118, 121
Metrie
conversion program, 78-83, 94
program, revising, 88-90
More than a language, 15
Multidimensional arrays, 145-148

N-code, 21

Nested procedures, 54
New data type, 126
Noninteger subseripts, 149

(o]

ODD(x), 105
One-way communication, 97-98
Operators
logical, 71-73
numerice
integer, 34
real, 45
set, 154-155
Ordinal types of variables, 46
ORD(x), 46,105
Our first program, 28-30

[

PAGE—built-in screen clearing,
42-43
Parameters—the procedure
messengers, 95-97
Parts of Pascal, 17-19
Pascal
a structured language, 14-15
a transportable language, 13
exponents in, 58-60
how it works, 15-17
intrinsic functions, 1056
library, 197
names, 26
rat’s nest analogy to, 11-14
source demo, 193
stack, 191
what it is, 10-11

Passing more than one parameter,
98-99
P-code, 21
Playing with nothing, 112-113
POS, 113-114
Power procedure, 126-129
Precedence
in calculations, 34
in logical operators, 73-74
PRED and SUCC, 152
PRED(x), 105
PROCEDURE((s), 47
nested, 54
once again, 95-102
stolen, 52-563
Program
expanding, 65-69
metric conversion, 78-83
structure, 25-27
Tic-Tac-Toe, 155-183
Protection against crashed CASES,
91-93
R
RANDOM Function, 171
Random Numbers, 161-163
Rat’s nest analogy to Pascal, 11-14
READ—input without pressing
“return,” 43-44
READLIN, 38-43
error traps, 39
revealed: an input example, 39
REAL variables, 44-45
REPEAT-UNTIL, 87-88
Reserved words, 26
Return more than one value, 105
Revising the metric program, 88-90
Roundoff, 133-134
ROUND(x), 105

S

Scalar date types, 144
Sending empty boxes, 100-101
Set operators, 154-155
Sets, 153-155
Side effects, 51-52
Spaced out Pascal, 28-29
SQR(x), 105
Starting the PROGRAM, 26
Statement (s)
compound, 61-63
FOR, 57-60
WHILE, 85-87
Stolen procedure, 52-53
STR, 128
STRING
arrays, 148-149
intrinsics, 111-116
variables, 34

208

Stuffing the variables, 34-35
Structured data types, 144
Subrange data types, 152-153
Subscripts, noninteger, 149
SUCC(x), 105

T

Three-dimensional arrays, 146-147
Tic-Tac-Toe program, 155-183
TRUNC (x), 105

Two-dimensional arrays, 145-146

u

UCSD Pascal, 21
distributors, 24
Undefined identifier, 53
User-defined data types, 15
Using
CHR to clear the screen, 40-42
LONGSs in place of REALSs, 124
parentheses for “precedence of
evaluation,” 73-74
new types, 151-152
sets, 154
the compound statement, 62-63

\'J
Value parameter, 97
VAR, 85
Variable

parameters—two way messengers,
99-100
types, 33-34
Variables, 32-33
BOOLEAN, 45-46
CHAR, 39-40
declaring, 35
global and local, 49-52
initializing, 37-38
INTEGER, 34
LONG INTEGER, 46
ordinal types, 46
REAL, 44-45
STRING, 34
stuffing, 34-35
Variations on FOR, 60-61

w

What are LONG INTEGERs, 124
What is Pascal, 10-11
Wirth, Niklaus, 11, 20-21
WHILE
explained, 85-87
statement, 85-87
Why use assembly language with
Pascal, 190-191
WRITE, 27
WriteABit, 28, 29
WRITELN, 27
WRITELN and WRITE, 27-30

TO THE READER

Sams Computer books cover Fundamentals — Programming — Interfacing — Technology written to meet the
needs of computer engineers, professionals, scientists, technicians, students, educators, business owners, per-
sonal computerists and home hobbyists.

Our Tradition is to meet your needs and in so doing we invite you to tell us what
your needs and interests are by completing the following:

1. 1 need books on the following topics:

2. | have the following Sams titles:

3. My occupation is:

Scientist, Engineer | — D P Professional
Personal computerist — Business owner
Technician, Serviceman — Computer store owner
Educator — Home hobbyist
Student Other

Name (print)
Address.
City State Zip

Mail to: Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1/80
4300 W. 62nd St., P.O. Box 7092
Indianapolis, Indiana 46206 21793

More Books from Sams and The Waite Group

0 UNIX™ Primer Plus

Mitchell Waite, Donald Martin, and Stephen Prata, The Waite Group
This primer presents UNIX in a clear, simple, and easy-to-understand
style. This ciassic is fully illustrated, and includes two handy
removable summary cards to keep near your computer for quick
reference.

ISBN: 0-672-22028-8, $19.95

O UNIX™ SYSTEM V Primer

Mitchell Waite, Donald Martin, and Stephen Prata, The Waite Group
Waite at his best! This UNIX V Primer differs from most UNIX books in
several ways. The entire powerful family of EX editors is included, of
which V is a subset. Shell scripts and shell programming are covered
in detail, as is the SED stream editor. UNIX filters, text cut and past
functions, and the text formatting utilities of NTOFF and TROFF are
thoroughly explained. Complex forms of FIND and AWK are also
covered. Includes hands-on examples, easily referenced "Command”
summaries, a complete glossary of UNIX buzzwords, and three tear-out
reference cards.

ISBN: 0-672-22404-6, $19.95

O Advanced UNIX™—A Programmer’s Guide
Stephen Prata, The Waite Group

This advanced guidebook shows how to use simple and complex
commands, including the Bourne Shell, shell scripts, loops, and
system calis; how to create UNIX graphics; how to allocate and
structure data in memory; and how to maximize the C-UNIX interface
and the C Library.

ISBN: 0-672-22403-8, $21.95

O The UNIX™ Shell Programming Language

Rod Manis and Marc H. Meyer

Software developers, programmers, professors and students with
programming experience in the UNIX operating system will utilize this
advanced programming guide emphasizing the Bourne shell, while
including the C shell and the Korn shell as wetil. This book
demonstrates how the powerful UNIX shell programming language is
creating a revolution in programming. Many easy-to-use example
programs can be run on any computer.

ISBN: 0-672-22497-6, $24.95

O Artificial Intelligence Programming on the
Macintosh™ pan Shafer, The Waite Group

Includes tutorials in Logo as well as in Lisp and Prolog, the three main
Al languages. For programmers whose background is in BASIC, an
appendix shows how to convert the program examples 1o that
language.

ISBN: 0-672-22447-X, $24.95

[0 CP/M® Primer (2nd Edition)

Mitchell Waite and Stephen Murtha, The Waite Group

This tutorial companion to the CP/M Bible inciudes the details of CP/M
terminology, operation, capabilities, and internal structure, plus a
convenient tear-out reference card with CP/M commands. This revised
edition allows you to begin using new or old CP/M versions
immediately in any application.

ISBN: 0-672-22170-5, $16.95

U CPIM® Bible: The Authoritative Reference Guide
to CPIM Mitchell Waite and John Angermeyer, The Waite Group
Already a classic, this highly detailed reference manuat puts CP/M's
commands and syntax at your fingertips. Instant one-stop access to
all CP/M keywords, commands, utilities, and conventions are found in
this easy-to-use format.

ISBN: 0-672-22015-6, $19.95

[J Soul of CP/M®: How to Use the Hidden Power of
Your CP/M System

Mitchell Waite and Robert Lafore, The Waite Group

Recommended for those who have read the CP/M Primer or who are
otherwise familiar with CP/M's outer layer utilities. This companion
volume teaches you how to use and modify CP/M’s internal features,
including how to modify BIOS and use CP/M system calls in your own
programs.

ISBN: 0-672-22030-X, $19.95

[] Discovering MS-DOS® Kate O'Day, The Waite Group

A comprehensive study of MS-DOS commands such as DEBUG, LINK,
and EDLIN is given the unique Waite touch. The author begins with
general information about operating systems, then shows you how to
use MS-DOS to produce letters and documents; create, name, and
manipulate files; use the keyboard and function keys to perform jobs
faster; and direct, sort, and find data quickly.

ISBN: 0-672-22407-0, $15.95

ORDER FORM

V7rc acle Grozepo

Name (p/ease print)

Signature

Address

City
State/Zip

[0 Check O Money Order [J MC [0 VISA O AE
Account Number

HEEEEEEEEEEREERE

PRODUCT NO. | QUANTITY| PRICE TOTAL
Subtotal
AR, CA, FL, IN, NC, NY, OH, TN, WV
residents add local sales tax
Handling Charge $2.50
WC300 Total Amount Enclosed

Expiration Date
Offer good in USA only. Prices subject to change without notice.
Full payment must accompany your order.

[0 MS-DOS® Bible steven Simrin

The second in the Waite Group’s MS-DOS series helps intermediate
users explore this operating system’s capabilities from system start-up
to creating, editing and managing files, handling data, and customizing
the keyboard. Includes detailed coverage of the tree-structured
directories, DOS filters, and the DEBUG, LINK, and EDLIN commands.
ISBN: 0-672-22408-9, $18.95

[] 68000, 68010, 68020 Primer

Stan Kelly-Bootle and Bob Fowler, The Waite Group

Here’s a user-friendly guide to one of the most popular families of
microprocessor chips on the market. The authors show you how to
use the powerful 68000 series to its maximum. Find out how to work
with assemblers and cross-assemblers, how to use various instructions
and registers, and how chips are employed in muitiuser systems.
Follow specific programming exampies and use the handy tear-out
instruction card for quick reference. For novice and experienced
programmers.

ISBN: 0-672-22405-4, $21.95

(1 The Official Book for the Commodore 128™
Personal Computer

Mitch Waite, Robert Lafore, and Jerry Volpe, The Waite Group

Learn to create detailed graphics and animation and to run thousands
of existing Commodore 64 programs. Find out how to program in
three-voice sound and how to use spreadsheets, word processing, the
database, and much more.

ISBN: 0-672-22456-9, $12.95

[0 MS-DOS® Developer’s Guide

John Angermeyer and Kevin Jaeger, The Waite Group

This useful guide is written expressly for programmers who want to
learn tricks for getting their software running in the MS-DOS
environment. Included are assembly coding tips, explanations of the
differences among MS-DOS versions 1.1, 2.1, and 3.1, and between MS-
DOS and IBM® PC-DOS™ ™.

ISBN: 0-672-22409-7, $24.95

J Pascal Primer

Mitchell Waite and David Fox, The Waite Group

Waite creates a new standard with the Pascal Primer. Now you can
generate powerful programs in UCSD" ™ Pascal. Let this primer swiftly
guide you through Pascal program structure, procedures, variables,
decision-making statements, and numeric functions. Includes useful
examptes and quizzes with answers, along with eight quick-reference
appendices.

ISBN: 0-672-21793-7, $17.85

O Printer Connections Bible

Kim G. House and Jeff Marble, The Waite Group

At last, a book that includes extensive diagrams specifying exact
wiring, DIP-switch settings and external printer detaiis; a Jump Table
of assorted printer/computer combinations; instructions on how to
make your own cables; and reviews of various printers and how they
function.

ISBN: 0-672-22406-2, $16.95

[0 Modem Connections Bible

Carolyn Curtis and Daniel L. Majhor, The Waite Group

Describes modems, how they work, and how to hook 10 well-known
modems to 9 name-brand microcomputers. A handy Jump Table
shows where to find the connection diagram you need and applies the
illustrations to 11 more computers and 7 additional modems. Also
features an overview of communications software, a glossary of
communications terms, an explanation of the RS-232C interface, and a
section on troubleshooting.

iISBN: 0-672-22446-1, $16.95

O C Primer Plus

Mitchell Waite, Stephen Prata, and Donald Martin, The Waite Group
it's Waite at his best. Provides a clear and complete introduction to
the C programming language. interfacing C with assembly language is
included, as well as many sample programs usable with any standard C
compiler.

ISBN: 0-672-22090-3, $22.95

These and other Sams books are available from your local bookstore,
computer store or distributor. If there are books you are interested in
that are unavailable in your area you can order directly from Sams.

Phone Orders — call toli -free 800-428-SAMS (in Alaska, Hawaii or
Indiana call 317-298-5566) to charge your.order to your account. -

Mail Orders — Use the order form provided or on a sheet of paper
include your name, address and daytime phone number. indicate the title
of the book, product number, quantity and price. Inciude $2.50 for shipp-
ing and handling. AR, CA, FL, IN, NC NY, OH, TN, WV residents add
local sales tax. To charge your VISA or MasterCard account, list your ac-
count number, expiration date and signature. Mail your order
to: Howard W. Sams & Co.

Department DM

4300 West 62nd St.

Indianapolis, IN 46268

PLACE
STAMP
HERE

Howard W. Sams & Co.
Department DM

P.O. Box 7092

Indianapolis, IN 46206

(GN3F jeul 18y porad ajou)

suonodung suswnN uopouny B Jo sweu a1e(o8(g JUBWIWOod B pua O} pasn

welsed spua uonoses weibosd urey (+ sweNboud +) 'gN3) s]es pue sAele

X JO anjeA anjosge suin}ey Se auwesg H 10 | (x)say ; sadA} ebuesgns uj abues Bm_o_u:_ 0} pasn s
suibaq uonoas weiboid urep (» weiboid uren =) NID3g) syos ‘sjduiosqns

uondioseq LOdAL LodA} aweN punouns 0} ‘suoiele|oap Aelie ul pasn |]

Hnsay isjaweied JUBWIWOD B pud 0} pasn {

‘an3 JUBWWOD € Lels 0} pasn }

)

P

NID3g JUBWWOD e Mels 0} pasn
suoljele}oaq *

‘awreN}oung NOILONNS

SNOLLONNS SHALOVHVHO TVIO3dS

«ONIH1S v3ad ,H3IODIUINI ONOT

HIODILNI HYHO NVY31008
eoSed dSON Ul 9|qe|leAe ale (,) %S118]Se Ue ylm sadA} oyl ‘aN3 HIS Iv3d
) SOd HIDILINI BDNOT
sadA NI1938 H1DN31 HIDILINI
suopereioeq | 1H3SNI HVHO
anfea Jabajuy wnwixew INIXYIN 313734 Nv31004
senjeA uedjoog INHL pue ISTV4 AdOD sadAf
81npeoosd e Jo sweu Sa1ejoad meMZ 100id IHNAIOO0Hd 1VONOD
sjuejsuo) $81npavoid pue suopouny buis ONNHL N1
1HDS dx3
SHIIAILNI3A! (NFLTING) QUVANYLS suoneseloaq _ NI 1ON HOS SO0
. i weibosd jo suweu $818108(0 v : HO ANV NIS NVLOHV
(reBa| aq 1ybiw s19}10BIBYD JBYJ0 ‘9SED JIaMO]| ‘sweNbBoid WYHHOHd aow Al ANNOH NYLlV
pue H3ddn) [e9SBd JO SUOISIBA JUBIBYIP Ul SUONBUBA G si0119d0 D07 sav

‘SpPIOM PaAIasal FUNLONULS WVHOOHd SU0oUN4 DLBUWNN

2g j,ueo Ing ,SPIOM POAISSal, [edsed u/ejuod Aew ssweN b aao
Jandwod sy Aq peziubooas diyssequiew 133 NI HHD INIXVI
aq 0} pasjuesenb ale siajoeseyo ybis isiiy AU g 5
'slequinu «pUY,, [€DID0T ANV 381V4
10 S19)13] Jay}Ia 8q 1SNW MO||0} ey} SIsloeIeyD 'z .JON,, [e21607 1ON 11X3 S4a11juap| Juelsuoy
‘18)19] B ylM LIBlS SaweN | jenba 1o uey} Jajealn = 010D
renbs Jo uey} ssa7 = JIHM NT3LIHM
SNOLLNIANOD ONINVN HEUL Jo1ESI < TILNN-1v3d3Y 3LIHM
uey ssa > 3873-NIHLA! N1gvad
‘adA} : (adAy : wesedlieA HYA |enba joN <> NIHL-4! avad
‘edA} : wesederep‘weredzien fenb3 = OLNMOG/OG-HOH 39vd
‘adAy : ‘wered||epA)sweNOUNd NOILONNS El\e) 1ndino/indu;
SHOLVH3IdO TYNOLLYI3Y 1013U0D JO MOJH
1817 48)aweied UOOUNS o _ NOILONNA
{odAy : wesedgleA V38 =8 HIOIUNI =1 - 0ons 3WNA300Hd
‘adAy : weledlieA HVA 0} anjeA subissy = a3Hdd anN3 Ni©3g
‘adA) | wesedgien ‘weled||epA)oWEND0Ld 3IHNA3O0Hd (g Aq v Buipiaip ado 138 HVA
uaym Japulewsal suonound jeuipiQ WVYHHO0Hd 3dAL
1817 18)8WiBIBd 9INPI0IH ay) splalk s3asn 1SNOD
| | 9 QOW V) sninpo Aaow ONIHLS aimoniig/uonjeseoaq
‘edAy: SWENNIBA | | uOISIAIP HIDIALNI Ald
: H H 10| UOISIAIP V3 /
‘adAy: SWENEIeA pueiado adAy
‘adA} :oweNgzieA ‘BWeN |Iep HVA SEe swesg 138 Auy uol108si9lU| 188
4 40| ma;% | uoneoydiyiniy » e3ie o2 ue xou u—>ﬂn
‘9dA) = sweNNadAL pueiado adA) \s —>—
: se auwes 138 Auy 90UBIBYIP 188 ® P_ _ u
‘8dA} = aweNzadA | H 10| Y 10 | uooengng = ;|
‘adA} = sweN|adA] ddAL puesado adAy >n
Se auwieg 198 Auy uolun }8g
14EISuOR 7 SLENNIE00 ue o ey ' JE2m) eousJaje oIn
JUBJSUOD = m.EmZN_wcoo 179} LOdAL uonduoseq 10qUIAS u u &. E x . u
JUBISUOD = BWENLISUOD ISNOD lnsay pueiadp X m u :
suoneiefo8q ¥oolg 10 weiboid SHOLYYALO OIvHEI0 Y J ﬂ u m ﬂ n n

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40, 1eo16o7 Ho I SuosIoUN4 OSIN anylL
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A A l\
F43H A104 R3IH 1N

OLNMOd
oa

Ald
1SNOOD
3svo
NID3g
AvHHY
anNy

004 siy} ul

s3asn WYHOOHd » 138V
TILNN 3HNA3O00Hd Ell
IAdAL MeE) o) £] »010D
o} 1 HO NOILONNA
NIHL 40 HO4d
*HLIM 13s 10N »3114
ATHM 1v3d3ad « 1IN an3
HVA ~@H003d dow 38713
palanoo jou are way} Buimoj|o) (,) YSLISISEe UB YlIM SPIOM By L
SQHOM QIAUISIY
fquswalels

OQ uonpuod ITHM

‘as|e} 1IN0 suels

UO1}11pUOD }I ||B 1B 81N03axa Jou Aew (s)jusw
-9JBlS "Oru} S| UojHpuod o110ads e djIym Ajuo
(shusawajels e jeadal 0} Juem nok usym asn

‘uoppuod INN
..ZN uauiajels

‘Ziuawayjels
!Jluswalels
1Y3d3d
‘90UO }SES| B BIN09X8
|11M JUBWBIBIS "BNJ) S§ UOIIIPUOD J14108ds B |jun

ITHM

(s)iuawalels e leadas 0} Juem noA usym esn HINN-LV3Id3H

‘giwawelels 3573
Liuswalels NJHL Uoilpuoo 4|
‘sjuswalels

OM] JO 3UO 9}NDBXS 0} juem noA uaym asn ISTIA-NIHL-AI

fluswaiels NIHL UonIpuol 4|
‘8NnJ} S| UOI}puUod 21}10ads e }I Ajuo
{shuawalels e 91N28Xa 0} juem NOA uaym asn

fJuswiaels O anjea-jeuly

OLNMOQ 8njeA-jefjjuj = : anjeA-jojuod 4o
Juswalels Qg anjeA-jeuly

0L 8njea-jenjul = : 8NjeA-{0UO0D HO A

'Swl} JO Jaquinu dlj10ads

e (shuawsalels e jeadal 0) Juem NOA usym as

(oweNo0id)11XT
"uo}ouny 10 8inpaosold e aaes| Ajainjewsid o} asn

‘aN3
fluawisle)s : 1S1{-1UBISUOD

fJuswa)e)s : JSI{-1uLISUOD

Juswale}s ! 1s)|-jueISU0D
40 X9puj-ased 3Sy9
*Sewiwo Aq pajesedss Sjuelsuod
JO 1SIf B S| 1S/-JURISUOY "PBINISXS S| XOpu}-8Sed
8y} Jo anfeA vy} SSYDIBW YDdIYM JUBISU0D 8Y)
Buimoy|o} Juswaje}s ay] '8)NddXd O} SJUBWIeIS
AUBW JO BUO 10918S O} JUEM NOA UBYM BS)

uonduosag

NIHL-HI

HOd

1iX3

3svo

puBWWOD

wod duruOza[ddy'mmm wosj papeorumoq

Juswalels punodwon e

Ag peymisgns aq Aew juswalels Aue ‘sejdwexs Buimoljo} syl u|

SANVIWINOD TOHLNOD 40 MOTd

ONIHLS TY3Y 'YIDIINI DNOT HIDILNI ‘HYHO 2dAl JO 3G URI NJBA — LIBA «

Bujuud penewnio} Buisn

sjeson Bunuud

sa|gelea a|diinw Bunuud

*(p@ajauljjuinial
abeilied ylim) uasios uo elep Sjulld

('sajdwexa aiow 10}
NT31I1HM 998) “.(panss| pasjauljjuinial-
oberen ou) aul| Jo pua Je 10sInd
SOABD| PUE UDBIOS UO Jojaweled sjulld

' [(ssa1dAo) NHN13Y se4inbay) Liep ul
sooe|d pue pleogAey wolj eyep s1dedoy

'NUNL3IY ssaud o0} Buiaey
nouyym Jgjoeleyo aibuis e 1deooe |Im
av3y ‘siqeuen adh} HYHO ® sI LieyD §|

“Jed|d 0} uUdaIds 8yl sesne)d

{g:/:wnNJesy
‘7 T WNNWNTILIHM

(1Buns

‘Butiis e s,819H,
INTILIHM

‘(NJBp
‘2Iep ‘LIEANTILIHM

(Lre AINTILIHM

(LlepA)3LIHM

(LrepANTQY3Y

(1reyd)avad
{Lnd1nO)3oVvd

SAYNAIOOUd DISNIULNI LNdLNO/LNdNI

8iNPaY0I = d "UOHOUNS = 4 "ONIHLS =S "HIDAINI =1 «

418189 01 p8
-uBisse si }jnsoy
‘ONIHLS © 0} (HID
-3LNI DNOT e 10 |

UE Jay}id) X $}JOAU0D d
11§891n08 Ul
wiv}jed Jo aoual
-IN220 1811} 8y} Jo

uoiysod ay) suinley 49
413 10

yibus) auy) suiniay N
sod 1e }sag

(nsiseq x)Y1S

(11ge0un0s ‘uisned)sod

(MSIHIONI

OlUl 824N0S SHBSU| d (sod ‘1seQ ‘©2In0S)IHISNI

so0414e]S e Buiu
-uibaq 41$824Nn08
wolj siajorIeyd

82|S SSAOWSY d (8z18's0d1e)S11Se0IN0g)31313a

sie)oeieyd 82/S
Bupiey sodrels
ye Buiuuibeq 4s

-99.n0S woly saidon 4's (8218 ‘sodlelS ‘11§80IN0S)IAdOD

NAIS ybnouyy Lis
JO Uoljeusiesuod

ay} st yolym
Bupiys mau e suiniay 4d‘s (N41S " 2i1S ‘IIS)LVYONOD
uonduosag L8041 aweN

insay

'SONJHIS ele sisjowelsed Jaylo Iy 'SHIDIIN/ dJe 8ziS pue
S04 ‘sodliels sielawesed sy} ‘soisuniul Buing Buimoijoy syl u|

$8INpadoid pue suonoung Bums

HIDIINI =1
JSTV4 suinjal asIMIBylo
‘ppo sI X J1 INHL swindd Nv31008 I (x}aao
X anjeA ||IDSY 8yl sey
YoIUM Jejoeleyd e suiniay HHO 1 (X)HHO
uonduaseg adAy LadAy awepN

}nsey isjoweied

suonouny J8yiQ

10118 Ue 8q [|iM 819U} ‘SI51X9 dUOU i |
[eupi0 = O 'Y3DILNI =1

: 1XJo wesed
10S$S900NS 9y} SUINleY SE alesg o) (x)oons

1X Jo welsed
J0ssaoapaid 8y} sulnley Se auieg 0 (X)g3dd
adA} elep s}t Ul spjoy x
yaiym uonisod ay} suiniay | o) (X)gdo
uondiosaqg L2904} LBdAY sweN

}nsay isjaweied

suolouny [BUIPIO

HADILINI ONOT =" "v34 =4 ‘HIDILNI =1 «

Buipunoi

noym 19Bajul 0} X SUBAUOD | Ji0d (X)DONNYL
(eany1sod aq i1snw x) x

}JO 1001 aienbs ay) suinjay d Y10 | (x)140s

we.ed

(zx) pasenbs x suinjay se sweg H 10| (X)HOS

a/buy 10 auls ay] suinjay H dio| (ebuyiNIS
1abajul

1S8Jeau ay} 0} X }Jo punoy | H (x)aNnoy
X JO 0l @seq

oy} 01 wyiuebo syl suiniay H 10| (x)907 -

(p ueyy 1o1e816 8q 1SNW X) X JO

wyiuebo) einjeu ay} suiniay e H 10| (X)N1
(x@)

Jamod yix ay) 0} @ suinyey d H 10| (X)dx3

a/buy 30 BUISOD Y} SuIN}eY H d 10| (21Buy)sOo
suelpel ul X j0

abue) asiaaul ay] suiniay H H10| (XNVLIOHVY

10 (NVLY

Downloaded from www.Apple2Online.com

Pascal Primer

If you are learning programming or have dabbled in the popular language BASIC and wish to
learn the capabilities of Pascal, this book is definitely written for you.

Pascal is a computer language with features and capabilities found only among the most exotic
and expensive languages. The purpose of this book is to teach you how to use Pascal to write
powerful programs. The most widely used version of Pascal is the UCSD version, and this is the
version that was used as the guide for writing this book.

Written and illustrated with a touch of humor, the informative text describes Pascal program
structure, Pascal variables, Pascal procedures, and many other features. There are chapters on
decision-making statements, numeric functions, string functions, arrays and sets, and much more.

The eight appendices present facts about the advantages and disadvantages of Pascal,
components of a Pascal system, interfacing assembly language routines, and other useful
information.

Mitchell Waite is president and founder of the Waite Group, a Sausalito, California based
producer of high-quality books on personal computing. Mr. Waite has coauthored 15 computer
titles, with over 750,000 copies now in print. He is an experienced programmer fluent in ten
computer languages, who has also studied nuclear engineering, built bio-feedback machines
and robots, and written poetry. A pioneer in the personal computer book field, Mr. Waite has
been involved in computers since 1976 when he bought his first Apple | from Steven Jobs. When
he has free time he swims, plays racquetball, and races motorcycles.

David Fox is the originator of the world’s first public-access microcomputer center in Marin
County, California. Since it opened in 1977, Marin Computer Center has served as a model for
bringing today’s technology to people who are not technically oriented. Mr. Fox studied
engineering at UCLA and Humanistic Psychology at Sonoma State University where he received
his bachelor’s degree. Mr. Fox has also had extensive experience in video production and film
and professional slide production. Mr. Fox is currently involved in the construction of a real time
computer-controlled simulation of a journey through space called the Starship Simulation.
When not playing with computers Mr. Fox enjoys reading and hiking with his wife and daughter.

Howard W. Sams & Co.
A Division of Macmillan, inc.
4300 West 62nd Street, Indianapolis, IN 46268 USA 0 "M81262"21793" 1

$17.95/21793 ISBN: 0-672-21793-7

	Pascal Primer
	Title Page
	Preface
	Acknowledgements
	Table of Contents
	Chapter 1: Introduction: An Overview of Pascal
	Chapter 2: Beginning Concepts
	Program Structure: Being, End
	Starting the Program
	Pascal Names
	BEGIN
	END
	WRITELN & WRITE
	First Program
	Cursor Control: GOTOXY

	Chapter 3: Variables & Inputting
	Variables
	Variable Types
	String Variables
	Integer Variables
	Calculations
	Stuffing the Variables
	Declaring Variables
	Initializing Variables
	READLN
	READLN Error Traps
	CHAR Variables
	Using CHR to Clear the Screen
	PAGE - Built-In Screen Clearing
	READ INPUT Without Pressing "Return"
	Other Variable Types: REALS, BOOLEANS, LONG INTEGERS
	Real Variables
	Boolean Variables
	Long Integer Variables
	Ordinal Types

	Chapter 4: Procedures the First Time Around
	Global & Local Variables
	Procedures Calling Procedures
	Nested Procedures

	Chapter 5: Program Control With Loops
	The FOR Statement
	Variations on FOR
	Compound Statements
	The Loan Payment Program
	Expanding a Program
	Formatted Printing

	Chapter 6: Program Control with Decision Making
	The IF-THEN Decision Maker
	Boolean Variables as teh Condition
	AND, OR and NOT
	Using Parentheses for "Precedence of Evaluation"
	IF-THEN-ELSE
	Metric Conversion Program
	Creating Constants
	How the Program Works

	Chapter 7: Further Control
	The WHILE Statement
	REPEAT-UNTIL
	Revising the Metric Program
	CASE: An Easier Way to Make Multiple Choices
	Protection Against Crashed CASEs
	CASE & Booleans

	The Metric Conversion Program Once Again

	Chapter 8: Procedures (Second Time Around) & Functions
	Parameters - The Procedure Messengers
	One-Way Communication
	Passing More than One Parameter
	Variable Parameters - Two Way Messengers
	The Inner Working of Parameters
	Expressions As Actual Parameters
	Intrinsic Procedures
	Functions - Cousins of Procedures
	Return More than One Value
	Pascal Intrinsic Functions
	Transcendental Functios
	Naming Procedures & Functions

	Chapter 9: Strings & Long Integers
	Maximum String Length
	String Intrinsics
	POS - Finding a String within a String
	CONCAT
	COPY
	DELETE
	INSERT
	Inputting Numbers with Strings
	Converting Strings to Integers
	Converting Integers into Strings
	STR
	Using Long Integers for Increased Accuracy
	Long Integers
	Using LONGs in Place of REALs
	The Loan Payment Program Revisited
	REALs

	Chapter 10: More Data Types
	ARRAYs - Linking Scalars Together
	Multidimensional Arrays
	String Arrays
	Miscellaneous Extras

	Customized Types - Enumerated User-Defined Types
	Using New Types

	Subrange Data Types
	SETs
	Using Sets
	Set Operators

	Other Structured Data Types
	Putting It All Together - The Tic-Tac-Toe Program

	Appendix A: Pascal's Advantages - A Summary
	Appendix B: Pascal's Bummers
	Appendix C: Other Parts of a Pascal System
	Assembler
	Library Linker
	Dynamic Debugger

	Appendix D: ASCII Character Codes
	Appendix E: Assembly Language Interfacing
	Appendix F: The 6502 Microprocessor
	Appendix G: Inaccuracies of the Amortization Loan Formula
	Appendix H: Answers to Quizzes
	Index
	Reader Survey Questionnaire
	UCSD Pascal Quick Reference Card
	Back Cover

